XGBoost_Gaze / Magazine_Optimization_Demo /main_different_mag.py
Demo750's picture
Upload folder using huggingface_hub
569f484 verified
raw
history blame
7.46 kB
import sys
sys.path.append('XGBoost_Prediction_Model/')
import warnings
warnings.filterwarnings("ignore")
import Predict
import torch
import numpy as np
import os
from os.path import isfile, isdir, join
from Magazine_Optimization import *
mypath = 'XGBoost_Prediction_Model/Magazine_Optimization_Demo/Magazines'
results = {}
#Target Magazine folders
Target = [join(mypath, 'M1'), join(mypath, 'M3')]
for Tg in Target:
dir_list_target = []
for sub_f in os.listdir(Tg):
if isdir(join(Tg, sub_f)):
sub_path_temp = join(Tg, sub_f)
if (sub_f.split('_')[0]) == 'Jpg':
dir_list_target = os.listdir(sub_path_temp)
dir_list_target.sort()
for i in range(len(dir_list_target)):
dir_list_target[i] = join(sub_path_temp,dir_list_target[i])
else:
Slots_target = torch.load(join(sub_path_temp,'Slots')).astype('int32')
# Sizes_target = torch.load(join(sub_path_temp,'surfaces'))
# Product_Groups_target = torch.load(join(sub_path_temp,'Prod_Cat'))
Textboxes_target = torch.load(join(sub_path_temp,'Textboxes'))
Obj_and_Topics_target = torch.load(join(sub_path_temp,'Obj_and_Topics'))
for f in os.listdir(mypath):
if isdir(join(mypath, f)) and f != 'M1' and f != 'M3':
print('Currently processing Target Magazine '+Tg+' with Ad Magazine '+f+'......')
path_temp_ad = join(mypath, f)
dir_list_ad = []
for sub_f in os.listdir(path_temp_ad):
if isdir(join(path_temp_ad, sub_f)):
sub_path_temp = join(path_temp_ad, sub_f)
if (sub_f.split('_')[0]) == 'Jpg':
dir_list_ad = os.listdir(sub_path_temp)
dir_list_ad.sort()
for i in range(len(dir_list_ad)):
dir_list_ad[i] = join(sub_path_temp,dir_list_ad[i])
else:
Slots_ad = torch.load(join(sub_path_temp,'Slots')).astype('int32')
Sizes_ad = torch.load(join(sub_path_temp,'surfaces'))
Product_Groups_ad = torch.load(join(sub_path_temp,'Prod_Cat'))
Textboxes_ad = torch.load(join(sub_path_temp,'Textboxes'))
Obj_and_Topics_ad = torch.load(join(sub_path_temp,'Obj_and_Topics'))
result = Preference_Matrix_different_magazine(dir_list_target, dir_list_ad,
Slots_target, Slots_ad,
Product_Groups_ad, Sizes_ad,
Textboxes_Target=Textboxes_target, Textboxes_Ad=Textboxes_ad,
Obj_and_Topics_Target=Obj_and_Topics_target, Obj_and_Topics_Ad=Obj_and_Topics_ad)
if result is not None:
Ad_Gaze, Brand_Gaze, Double_Page_Ad_Attention, Double_Page_Brand_Attention, Assign_ids_ad, Assign_ids_target = result
#Assignement Problem
workers = []
jobs = []
N = np.max(Ad_Gaze.shape)
M_small = np.min(Ad_Gaze.shape)
for i in range(N):
workers.append(i+1)
jobs.append(i+1)
zeros_aux = np.zeros((N,N))
zeros_aux[:Ad_Gaze.shape[0],:] = Ad_Gaze
Ad_Gaze = zeros_aux
zeros_aux = np.zeros((N,N))
zeros_aux[:Brand_Gaze.shape[0],:] = Brand_Gaze
Brand_Gaze = zeros_aux
max_ad_attention = np.max(Ad_Gaze)
max_brand_attention = np.max(Brand_Gaze)
Ad_Gaze_cost = max_ad_attention - Ad_Gaze
Brand_Gaze_cost = max_brand_attention - Brand_Gaze
Prob_solved_Ad = Assignment_Problem(Ad_Gaze_cost, workers, jobs)
Prob_solved_Brand = Assignment_Problem(Brand_Gaze_cost, workers, jobs)
# Print the variables optimized value
print('If based on maximizing Overall Ad Attention: ')
strategy_AG = ''
BG_under_AG_assignment = 0
for v in Prob_solved_Ad.variables():
if v.varValue == 1:
curr = (v.name).split('_')
BG_under_AG_assignment += Brand_Gaze_cost[int(curr[1])-1,int(curr[2])-1]
if int(curr[1]) <= M_small:
temp = curr[0]+' Ad '+str(Assign_ids_ad[int(curr[1])-1])+' to Counterpage '+str(Assign_ids_target[int(curr[2])-1])
strategy_AG += temp+'; '
print(temp)
# The optimised objective function value is printed to the screen
m_ad = N*max_ad_attention - value(Prob_solved_Ad.objective) + sum(Double_Page_Ad_Attention)
print("Maximized Ad Attention = ", m_ad, " sec.")
print("Maximized Average Ad attention on each Ad = ", (N*max_ad_attention - value(Prob_solved_Ad.objective) + sum(Double_Page_Ad_Attention))/(N + len(Double_Page_Ad_Attention)), " sec.")
print()
# Print the variables optimized value
print('If based on maximizing Overall Brand Attention: ')
strategy_BG = ''
for v in Prob_solved_Brand.variables():
if v.varValue == 1:
curr = (v.name).split('_')
if int(curr[1]) <= M_small:
temp = curr[0]+' Ad '+str(Assign_ids_ad[int(curr[1])-1])+' to Counterpage '+str(Assign_ids_target[int(curr[2])-1])
strategy_BG += temp+'; '
print(temp)
# The optimised objective function value is printed to the screen
m_brand = N*max_brand_attention - value(Prob_solved_Brand.objective) + sum(Double_Page_Brand_Attention)
BG_under_AG_assignment = N*max_brand_attention - BG_under_AG_assignment + sum(Double_Page_Brand_Attention)
print("Maximized Brand Attention = ", m_brand, " sec.")
print("New Brand Gaze under AG assignment = ", BG_under_AG_assignment, " sec.")
print("Maximized Average Brand attention on each Ad = ", (N*max_brand_attention - value(Prob_solved_Brand.objective) + sum(Double_Page_Brand_Attention))/(N + len(Double_Page_Brand_Attention)), " sec.")
print('End of Magazine '+f+'......')
results[Tg+' '+f] = {'AG':[strategy_AG,m_ad,np.trace(Ad_Gaze)], 'BG':[strategy_BG,m_brand,np.trace(Brand_Gaze),BG_under_AG_assignment]}
print()
print()
else:
print("Ads cannot be fully assigned!")
print()
print('Summary: ')
for f in list(results.keys()):
print('Magazine '+f+': ')
dict_curr = results[f]
print('Ad Gaze: ')
print('Strategy: '+dict_curr['AG'][0])
print('max Attention: ',dict_curr['AG'][1])
print('------------------------')
print('Brand Gaze: ')
print('Strategy: '+dict_curr['BG'][0])
print('max Attention: ',dict_curr['BG'][1])
print('------------------------')
print()