Demo750 commited on
Commit
39ae7e7
·
verified ·
1 Parent(s): 9e8e76b

Update Webpage.py

Browse files

Make it more concise

Files changed (1) hide show
  1. Webpage.py +40 -26
Webpage.py CHANGED
@@ -10,6 +10,9 @@ CATEGORIES = list(GENERAL_CATEGORY.keys())
10
  CATEGORIES.sort()
11
 
12
  def calculate_areas(prompts, brand_num, pictorial_num, text_num):
 
 
 
13
  points_all = prompts["points"]
14
  brand_surf = 0
15
  for i in range(brand_num):
@@ -33,29 +36,26 @@ def calculate_areas(prompts, brand_num, pictorial_num, text_num):
33
  x1 = points_all[-2][0]; y1 = points_all[-2][1]
34
  x2 = points_all[-2][3]; y2 = points_all[-2][4]
35
  ad_size += np.abs((x1-x2)*(y1-y2))
 
 
 
 
 
 
36
 
37
  whole_size = 0
38
- x1 = points_all[-1][0]; y1 = points_all[-1][1]
39
- x2 = points_all[-1][3]; y2 = points_all[-1][4]
40
- whole_size += np.abs((x1-x2)*(y1-y2))
41
 
42
- return (brand_surf/whole_size*100, pictorial_surf/whole_size*100, text_surf/whole_size*100, ad_size/whole_size*100)
43
 
44
 
45
- def attention(whole_display_prompt, ad, context,
46
  brand_num, pictorial_num, text_num,
47
  category, ad_location, gaze_type):
48
- text_detection_model_path = 'EAST-Text-Detection/frozen_east_text_detection.pb'
49
- LDA_model_pth = 'LDA_Model_trained/lda_model_best_tot.model'
50
- training_ad_text_dictionary_path = 'LDA_Model_trained/object_word_dictionary'
51
- training_lang_preposition_path = 'LDA_Model_trained/dutch_preposition'
52
-
53
- # caption_ad = XGBoost_utils.Caption_Generation(ad)
54
- # caption_context = XGBoost_utils.Caption_Generation(context)
55
- # ad_topic = XGBoost_utils.Topic_emb(caption_ad)
56
- # ctpg_topic = XGBoost_utils.Topic_emb(caption_context)
57
- ad_topic = np.random.randn(1,768)
58
- ctpg_topic = np.random.randn(1,768)
59
 
60
  prod_group = np.zeros(38)
61
  prod_group[GENERAL_CATEGORY[category]] = 1
@@ -67,13 +67,18 @@ def attention(whole_display_prompt, ad, context,
67
  else:
68
  ad_loc = None
69
 
70
- brand_percent, visual_percent, text_percent, adv_size_percent = calculate_areas(whole_display_prompt, brand_num, pictorial_num, text_num)
71
  surfaces = [brand_percent, visual_percent, text_percent, adv_size_percent*10/100]
72
 
73
- ad = ad.convert('RGB')
74
- ad = cv.resize(np.array(ad), (640, 832))
75
- context = context.convert('RGB')
76
- context = cv.resize(np.array(context), (640, 832))
 
 
 
 
 
77
 
78
 
79
  Gaze = Predict.Ad_Gaze_Prediction(input_ad_path=ad, input_ctpg_path=context, ad_location=ad_loc,
@@ -89,9 +94,16 @@ def greet(name, intensity):
89
 
90
  demo = gr.Interface(
91
  fn=attention,
92
- inputs=[ImagePrompter(label="Upload Entire (Ad+Context) Image, and Draw Bounding Boxes"),
93
- gr.Image(label="Ad Image", sources=['upload', 'webcam'], type="pil"),
94
- gr.Image(label="Context Image", sources=['upload', 'webcam'], type="pil"),
 
 
 
 
 
 
 
95
  gr.Number(label="Number of brand bounding boxes drawn"),
96
  gr.Number(label="Number of pictorial bounding boxes drawn"),
97
  gr.Number(label="Number of text bounding boxes drawn"),
@@ -100,8 +112,10 @@ demo = gr.Interface(
100
  gr.Textbox(label="Gaze Type", info="Enter Ad or Brand")
101
  ],
102
  outputs=[gr.Number(label="Predicted Gaze (sec)")],
103
- title="Gaze Prediction",
104
- description="In the section right below, please first upload the entire image that contains both ad and context, then draw bounding boxes. Please draw ALL Bounding Boxes in the order of: (1) brand, (2) pictorial, (3) text elements, (4) advertisement and (5) the entire image here. NOTE: Each ad element can have more than 1 boxes.",
 
 
105
  theme=gr.themes.Soft()
106
  )
107
 
 
10
  CATEGORIES.sort()
11
 
12
  def calculate_areas(prompts, brand_num, pictorial_num, text_num):
13
+ image_entire = prompts["image"]
14
+ w, h = image_entire.size
15
+ image_entire = np.array(image_entire.convert('RGB'))
16
  points_all = prompts["points"]
17
  brand_surf = 0
18
  for i in range(brand_num):
 
36
  x1 = points_all[-2][0]; y1 = points_all[-2][1]
37
  x2 = points_all[-2][3]; y2 = points_all[-2][4]
38
  ad_size += np.abs((x1-x2)*(y1-y2))
39
+ ad_image = image_entire[int(y1):int(y2), int(x1):int(x2), :]
40
+ left_margin = x1; right_margin = w-x2
41
+ if left_margin >= right_margin:
42
+ context_image = image_entire[:, :int(x1), :]
43
+ else:
44
+ context_image = image_entire[:, int(x2):, :]
45
 
46
  whole_size = 0
47
+ whole_size += w*h
 
 
48
 
49
+ return (brand_surf/whole_size*100, pictorial_surf/whole_size*100, text_surf/whole_size*100, ad_size/whole_size*100, ad_image, context_image)
50
 
51
 
52
+ def attention(notes, whole_display_prompt,
53
  brand_num, pictorial_num, text_num,
54
  category, ad_location, gaze_type):
55
+ text_detection_model_path = '../XGBoost_Prediction_Model/EAST-Text-Detection/frozen_east_text_detection.pb'
56
+ LDA_model_pth = '../XGBoost_Prediction_Model/LDA_Model_trained/lda_model_best_tot.model'
57
+ training_ad_text_dictionary_path = '../XGBoost_Prediction_Model/LDA_Model_trained/object_word_dictionary'
58
+ training_lang_preposition_path = '../XGBoost_Prediction_Model/LDA_Model_trained/dutch_preposition'
 
 
 
 
 
 
 
59
 
60
  prod_group = np.zeros(38)
61
  prod_group[GENERAL_CATEGORY[category]] = 1
 
67
  else:
68
  ad_loc = None
69
 
70
+ brand_percent, visual_percent, text_percent, adv_size_percent, ad_image, context_image = calculate_areas(whole_display_prompt, brand_num, pictorial_num, text_num)
71
  surfaces = [brand_percent, visual_percent, text_percent, adv_size_percent*10/100]
72
 
73
+ # caption_ad = XGBoost_utils.Caption_Generation(Image.fromarray(np.uint8(ad_image)))
74
+ # caption_context = XGBoost_utils.Caption_Generation(Image.fromarray(np.uint8(context_image)))
75
+ # ad_topic = XGBoost_utils.Topic_emb(caption_ad)
76
+ # ctpg_topic = XGBoost_utils.Topic_emb(caption_context)
77
+ ad_topic = np.random.randn(1,768)
78
+ ctpg_topic = np.random.randn(1,768)
79
+
80
+ ad = cv.resize(ad_image, (640, 832))
81
+ context = cv.resize(context_image, (640, 832))
82
 
83
 
84
  Gaze = Predict.Ad_Gaze_Prediction(input_ad_path=ad, input_ctpg_path=context, ad_location=ad_loc,
 
94
 
95
  demo = gr.Interface(
96
  fn=attention,
97
+ inputs=[gr.Markdown("""
98
+ Instruction:
99
+ 1. Click to upload or drag the entire image that contains BOTH ad and its context;
100
+ 2. Draw bounding boxes in the order of:
101
+    (a) Brand element(s)
102
+    (b) Pictorial element(s)
103
+    (c) Text element(s)
104
+    (d) The advertisement.
105
+ NOTE: Each ad element can have more than 1 boxes."""),
106
+ ImagePrompter(label="Upload Entire (Ad+Context) Image, and Draw Bounding Boxes", sources=['upload'], type="pil"),
107
  gr.Number(label="Number of brand bounding boxes drawn"),
108
  gr.Number(label="Number of pictorial bounding boxes drawn"),
109
  gr.Number(label="Number of text bounding boxes drawn"),
 
112
  gr.Textbox(label="Gaze Type", info="Enter Ad or Brand")
113
  ],
114
  outputs=[gr.Number(label="Predicted Gaze (sec)")],
115
+ title="Ad Gaze Prediction",
116
+ description="""This app accompanies: "Contextual Advertising with Theory-Informed Machine Learning", manuscript submitted to the Journal of Marketing.
117
+ App Version: 1.0, Date: 10/24/2024.
118
+ Warning: Due to computational efficiency, current version has not activated LLM generated ad topics. In future version, LLM topics will be activated in GPU environment.""",
119
  theme=gr.themes.Soft()
120
  )
121