Spaces:
Running
Running
Update Webpage.py
Browse files- Webpage.py +21 -9
Webpage.py
CHANGED
@@ -4,10 +4,14 @@ import Predict
|
|
4 |
import XGBoost_utils
|
5 |
import numpy as np
|
6 |
import cv2 as cv
|
|
|
|
|
7 |
|
8 |
GENERAL_CATEGORY = {'Potatoes / Vegetables / Fruit': 0, 'Chemical products': 1, 'Photo / Film / Optical items': 2, 'Catering industry': 3, 'Industrial products other': 4, 'Media': 5, 'Real estate': 6, 'Government': 7, 'Personnel advertisements': 8, 'Cars / Commercial vehicles': 9, 'Cleaning products': 10, 'Retail': 11, 'Fragrances': 12, 'Footwear / Leather goods': 13, 'Software / Automation': 14, 'Telecommunication equipment': 15, 'Tourism': 16, 'Transport/Communication companies': 17, 'Transport services': 18, 'Insurances': 19, 'Meat / Fish / Poultry': 20, 'Detergents': 21, 'Foods General': 22, 'Other services': 23, 'Banks and Financial Services': 24, 'Office Products': 25, 'Household Items': 26, 'Non-alcoholic beverages': 27, 'Hair, Oral and Personal Care': 28, 'Fashion and Clothing': 29, 'Other products and Services': 30, 'Paper products': 31, 'Alcohol and Other Stimulants': 32, 'Medicines': 33, 'Recreation and Leisure': 34, 'Electronics': 35, 'Home Furnishings': 36, 'Products for Business Use': 37}
|
9 |
CATEGORIES = list(GENERAL_CATEGORY.keys())
|
10 |
CATEGORIES.sort()
|
|
|
|
|
11 |
|
12 |
def calculate_areas(prompts, brand_num, pictorial_num, text_num):
|
13 |
image_entire = prompts["image"]
|
@@ -33,8 +37,8 @@ def calculate_areas(prompts, brand_num, pictorial_num, text_num):
|
|
33 |
text_surf += np.abs((x1-x2)*(y1-y2))
|
34 |
|
35 |
ad_size = 0
|
36 |
-
x1 = points_all[-
|
37 |
-
x2 = points_all[-
|
38 |
ad_size += np.abs((x1-x2)*(y1-y2))
|
39 |
ad_image = image_entire[int(y1):int(y2), int(x1):int(x2), :]
|
40 |
left_margin = x1; right_margin = w-x2
|
@@ -74,12 +78,18 @@ def attention(notes, whole_display_prompt,
|
|
74 |
# caption_context = XGBoost_utils.Caption_Generation(Image.fromarray(np.uint8(context_image)))
|
75 |
# ad_topic = XGBoost_utils.Topic_emb(caption_ad)
|
76 |
# ctpg_topic = XGBoost_utils.Topic_emb(caption_context)
|
|
|
77 |
ad_topic = np.random.randn(1,768)
|
78 |
ctpg_topic = np.random.randn(1,768)
|
79 |
|
80 |
ad = cv.resize(ad_image, (640, 832))
|
|
|
81 |
context = cv.resize(context_image, (640, 832))
|
82 |
|
|
|
|
|
|
|
|
|
83 |
|
84 |
Gaze = Predict.Ad_Gaze_Prediction(input_ad_path=ad, input_ctpg_path=context, ad_location=ad_loc,
|
85 |
text_detection_model_path=text_detection_model_path, LDA_model_pth=LDA_model_pth,
|
@@ -87,7 +97,7 @@ def attention(notes, whole_display_prompt,
|
|
87 |
ad_embeddings=ad_topic, ctpg_embeddings=ctpg_topic,
|
88 |
surface_sizes=surfaces, Product_Group=prod_group,
|
89 |
obj_detection_model_pth=None, num_topic=20, Gaze_Time_Type=gaze_type)
|
90 |
-
return np.round(Gaze,2)
|
91 |
|
92 |
def greet(name, intensity):
|
93 |
return "Hello " * intensity + name + "!"
|
@@ -98,9 +108,9 @@ demo = gr.Interface(
|
|
98 |
Instruction:
|
99 |
1. Click to upload or drag the entire image that contains BOTH ad and its context;
|
100 |
2. Draw bounding boxes in the order of:
|
101 |
-
(a) Brand element(s)
|
102 |
-
(b) Pictorial element(s)
|
103 |
-
(c) Text element(s)
|
104 |
(d) The advertisement.
|
105 |
NOTE: Each ad element can have more than 1 boxes."""),
|
106 |
ImagePrompter(label="Upload Entire (Ad+Context) Image, and Draw Bounding Boxes", sources=['upload'], type="pil"),
|
@@ -108,10 +118,12 @@ demo = gr.Interface(
|
|
108 |
gr.Number(label="Number of pictorial bounding boxes drawn"),
|
109 |
gr.Number(label="Number of text bounding boxes drawn"),
|
110 |
gr.Dropdown(CATEGORIES, label="Product Category"),
|
111 |
-
gr.
|
112 |
-
gr.
|
113 |
],
|
114 |
-
|
|
|
|
|
115 |
title="Ad Gaze Prediction",
|
116 |
description="""This app accompanies: "Contextual Advertising with Theory-Informed Machine Learning", manuscript submitted to the Journal of Marketing.
|
117 |
App Version: 1.0, Date: 10/24/2024.
|
|
|
4 |
import XGBoost_utils
|
5 |
import numpy as np
|
6 |
import cv2 as cv
|
7 |
+
import torch
|
8 |
+
from PIL import Image
|
9 |
|
10 |
GENERAL_CATEGORY = {'Potatoes / Vegetables / Fruit': 0, 'Chemical products': 1, 'Photo / Film / Optical items': 2, 'Catering industry': 3, 'Industrial products other': 4, 'Media': 5, 'Real estate': 6, 'Government': 7, 'Personnel advertisements': 8, 'Cars / Commercial vehicles': 9, 'Cleaning products': 10, 'Retail': 11, 'Fragrances': 12, 'Footwear / Leather goods': 13, 'Software / Automation': 14, 'Telecommunication equipment': 15, 'Tourism': 16, 'Transport/Communication companies': 17, 'Transport services': 18, 'Insurances': 19, 'Meat / Fish / Poultry': 20, 'Detergents': 21, 'Foods General': 22, 'Other services': 23, 'Banks and Financial Services': 24, 'Office Products': 25, 'Household Items': 26, 'Non-alcoholic beverages': 27, 'Hair, Oral and Personal Care': 28, 'Fashion and Clothing': 29, 'Other products and Services': 30, 'Paper products': 31, 'Alcohol and Other Stimulants': 32, 'Medicines': 33, 'Recreation and Leisure': 34, 'Electronics': 35, 'Home Furnishings': 36, 'Products for Business Use': 37}
|
11 |
CATEGORIES = list(GENERAL_CATEGORY.keys())
|
12 |
CATEGORIES.sort()
|
13 |
+
LOCATIONS = ['Left', 'Right', 'Full']
|
14 |
+
GAZE_TYPE = ['Ad', 'Brand']
|
15 |
|
16 |
def calculate_areas(prompts, brand_num, pictorial_num, text_num):
|
17 |
image_entire = prompts["image"]
|
|
|
37 |
text_surf += np.abs((x1-x2)*(y1-y2))
|
38 |
|
39 |
ad_size = 0
|
40 |
+
x1 = points_all[-1][0]; y1 = points_all[-1][1]
|
41 |
+
x2 = points_all[-1][3]; y2 = points_all[-1][4]
|
42 |
ad_size += np.abs((x1-x2)*(y1-y2))
|
43 |
ad_image = image_entire[int(y1):int(y2), int(x1):int(x2), :]
|
44 |
left_margin = x1; right_margin = w-x2
|
|
|
78 |
# caption_context = XGBoost_utils.Caption_Generation(Image.fromarray(np.uint8(context_image)))
|
79 |
# ad_topic = XGBoost_utils.Topic_emb(caption_ad)
|
80 |
# ctpg_topic = XGBoost_utils.Topic_emb(caption_context)
|
81 |
+
np.random.seed(42)
|
82 |
ad_topic = np.random.randn(1,768)
|
83 |
ctpg_topic = np.random.randn(1,768)
|
84 |
|
85 |
ad = cv.resize(ad_image, (640, 832))
|
86 |
+
print('ad shape: ', ad.shape)
|
87 |
context = cv.resize(context_image, (640, 832))
|
88 |
|
89 |
+
adv_imgs = torch.permute(torch.tensor(ad), (2,0,1)).unsqueeze(0)
|
90 |
+
ctpg_imgs = torch.permute(torch.tensor(context), (2,0,1)).unsqueeze(0)
|
91 |
+
ad_locations = torch.tensor([1,0]).unsqueeze(0)
|
92 |
+
heatmap = Predict.HeatMap_CNN(adv_imgs, ctpg_imgs, ad_locations, Gaze_Type='AG')
|
93 |
|
94 |
Gaze = Predict.Ad_Gaze_Prediction(input_ad_path=ad, input_ctpg_path=context, ad_location=ad_loc,
|
95 |
text_detection_model_path=text_detection_model_path, LDA_model_pth=LDA_model_pth,
|
|
|
97 |
ad_embeddings=ad_topic, ctpg_embeddings=ctpg_topic,
|
98 |
surface_sizes=surfaces, Product_Group=prod_group,
|
99 |
obj_detection_model_pth=None, num_topic=20, Gaze_Time_Type=gaze_type)
|
100 |
+
return np.round(Gaze,2), Image.fromarray(np.flip(heatmap, axis=2))
|
101 |
|
102 |
def greet(name, intensity):
|
103 |
return "Hello " * intensity + name + "!"
|
|
|
108 |
Instruction:
|
109 |
1. Click to upload or drag the entire image that contains BOTH ad and its context;
|
110 |
2. Draw bounding boxes in the order of:
|
111 |
+
(a) Brand element(s) (skip if N.A.)
|
112 |
+
(b) Pictorial element(s) (skip if N.A.)
|
113 |
+
(c) Text element(s) (skip if N.A.)
|
114 |
(d) The advertisement.
|
115 |
NOTE: Each ad element can have more than 1 boxes."""),
|
116 |
ImagePrompter(label="Upload Entire (Ad+Context) Image, and Draw Bounding Boxes", sources=['upload'], type="pil"),
|
|
|
118 |
gr.Number(label="Number of pictorial bounding boxes drawn"),
|
119 |
gr.Number(label="Number of text bounding boxes drawn"),
|
120 |
gr.Dropdown(CATEGORIES, label="Product Category"),
|
121 |
+
gr.Dropdown(LOCATIONS, label='Ad Location'),
|
122 |
+
gr.Dropdown(GAZE_TYPE, label='Gaze Type')
|
123 |
],
|
124 |
+
examples=[['Demo/004.jpg']],
|
125 |
+
outputs=[gr.Number(label="Predicted Gaze (sec)"),
|
126 |
+
gr.Image(label="Heatmap by ResNet50 (Hotter/Redder regions show more contribution)")],
|
127 |
title="Ad Gaze Prediction",
|
128 |
description="""This app accompanies: "Contextual Advertising with Theory-Informed Machine Learning", manuscript submitted to the Journal of Marketing.
|
129 |
App Version: 1.0, Date: 10/24/2024.
|