import re import cv2 as cv import numpy as np import matplotlib.pyplot as plt import copy import pandas as pd import os import math import time from imutils.object_detection import non_max_suppression from sklearn.mixture import GaussianMixture from sklearn.cluster import KMeans import xgboost as xgb from sklearn.linear_model import LinearRegression from sklearn.neural_network import MLPRegressor from sklearn.datasets import make_regression from sklearn.model_selection import train_test_split from scipy.stats import norm from sklearn.neighbors import KernelDensity from PIL import Image from io import BytesIO from pytesseract import pytesseract from gensim import corpora, models, similarities import nltk from nltk.corpus import stopwords import torch from transformers import AutoModel, AutoTokenizer from sentence_transformers import SentenceTransformer General_Category = { 'Potatoes / Vegetables / Fruit': ['Potatoes / Vegetables / Fruit'], 'Chemical products': ['Chemical products'], 'Photo / Film / Optical items': ['Photo / Film / Optical items'], 'Catering industry': ['Catering industry'], 'Industrial products other': ['Industrial products other'], 'Media': ['Media'], 'Real estate': ['Real estate'], 'Government': ['Government'], 'Personnel advertisements': ['Personnel advertisements'], 'Cars / Commercial vehicles': ['Cars / Commercial vehicles'], 'Cleaning products': ['Cleaning products'], 'Retail': ['Retail'], 'Fragrances': ['Fragrances'], 'Footwear / Leather goods': ['Footwear / Leather goods'], 'Software / Automation': ['Software / Automation'], 'Telecommunication equipment': ['Telecommunication equipment'], 'Tourism': ['Tourism'], 'Transport/Communication companies': ['Transport/Communication companies'], 'Transport services': ['Transport services'], 'Insurances': ['Insurances'], 'Meat / Fish / Poultry': ['Meat / Fish / Poultry'], 'Detergents': ['Detergents'], 'Foods General': ['Foods general', 'Bread / Banquet', 'Chocolate / Confectionery', 'Soup / Soup products', 'Edible fats', 'Sugar / Herbs / Spices', 'Dairy'], 'Other services': ['Education', 'Other services'], 'Banks and Financial Services': ['Banks / Financing', 'Financial services other'], 'Office Products': ['Office equipment', 'Office automation hardware', 'Office products'], 'Household Items': ['Household items', 'Small household equipment'], 'Non-alcoholic beverages': ['Non-alcoholic beverages', 'Coffee/Tea'], 'Hair, Oral and Personal Care': ['Skin care', 'Hair care', 'Oral care', 'Personal care electric'], 'Fashion and Clothing': ['Outerwear', 'Underwear / Sleepwear'], 'Other products and Services': ['Pet foods', 'Other products and services', 'Other advertisements'], 'Paper products': ['Paper products', 'Paper products body care'], 'Alcohol and Other Stimulants': ['Weak alcoholic drinks', 'Strong alcoholic drinks', 'Tobacco'], 'Medicines': ['Medicines', 'Bandages'], 'Recreation and Leisure': ['Recreation', 'Leisure items / Hobby items'], 'Electronics': ['Kitchen appliances', 'Brown goods (Sound and video Electronics)'], 'Home Furnishings': ['Home furnishings', 'Home upholstery', 'Home textiles'], 'Products for Business Use': ['Products for business use', 'Other business services']} #Saliency Map: Itti-Koch def Itti_Saliency(img, scale_final=4): r = copy.copy(img[:,:,0].astype('float64')) g = copy.copy(img[:,:,1].astype('float64')) b = copy.copy(img[:,:,2].astype('float64')) #Intensity I = (r+g+b)/3 dim1_img, dim2_img = np.shape(I) #Normalization of r,g,b mask1 = I >= 0.1*np.max(I) mask2 = I < 0.1*np.max(I) r[mask1] = r[mask1]/I[mask1] r[mask2] = 0 g[mask1] = g[mask1]/I[mask1] g[mask2] = 0 b[mask1] = b[mask1]/I[mask1] b[mask2] = 0 #Fine-tuned Color Channels R = r-(g+b)/2 G = g-(r+b)/2 B = b-(r+g)/2 Y = (r+g)/2-np.abs(r-g)/2-b #Intensity Feature Maps I_pyr = [I] R_pyr = [R] G_pyr = [G] B_pyr = [B] Y_pyr = [Y] I_maps = [] RG_maps = [] BY_maps = [] for i in range(8): I_pyr.append(cv.pyrDown(I_pyr[i])) R_pyr.append(cv.pyrDown(R_pyr[i])) G_pyr.append(cv.pyrDown(G_pyr[i])) B_pyr.append(cv.pyrDown(B_pyr[i])) Y_pyr.append(cv.pyrDown(Y_pyr[i])) for c in (2,3,4): for d in (3,4): shape = (np.shape(I_pyr[c])[1],np.shape(I_pyr[c])[0]) temp = cv.resize(I_pyr[c+d], shape, interpolation=cv.INTER_LINEAR) temp_G = cv.resize(G_pyr[c+d], shape, interpolation=cv.INTER_LINEAR) temp_R = cv.resize(R_pyr[c+d], shape, interpolation=cv.INTER_LINEAR) temp_B = cv.resize(B_pyr[c+d], shape, interpolation=cv.INTER_LINEAR) temp_Y = cv.resize(Y_pyr[c+d], shape, interpolation=cv.INTER_LINEAR) I_maps.append(np.abs(I_pyr[c]-temp)) RG_maps.append(np.abs((R_pyr[c]-G_pyr[c])-(temp_G-temp_R))) BY_maps.append(np.abs((B_pyr[c]-Y_pyr[c])-(temp_Y-temp_B))) g_kernel = cv.getGaborKernel((5, 5), 2.0, np.pi/4, 10.0, 0.5, 0) O_maps = [] for theta in (0, np.pi/4, np.pi/2, 3*np.pi/4): O_pyr = [I] for i in range(8): filtered = cv.filter2D(I_pyr[i], ddepth=-1, kernel=g_kernel) dim1,dim2 = np.shape(filtered) O_pyr.append(cv.resize(filtered, (dim1//2,dim2//2), interpolation=cv.INTER_LINEAR)) for c in (2,3,4): for d in (3,4): shape = (np.shape(O_pyr[c])[1],np.shape(O_pyr[c])[0]) temp = cv.resize(O_pyr[c+d], shape, interpolation=cv.INTER_LINEAR) O_maps.append(np.abs(O_pyr[c]-temp)) S = 0 M = 10 scaling = 2**scale_final for I_map in I_maps: temp = normalization(I_map,M) temp = cv.resize(temp, (dim1_img//scaling, dim2_img//scaling), interpolation=cv.INTER_LINEAR) S += temp for i in range(len(RG_maps)): temp = normalization(RG_maps[i],M)+normalization(BY_maps[i],M) temp = cv.resize(temp, (dim1_img//scaling, dim2_img//scaling), interpolation=cv.INTER_LINEAR) S += temp for O_map in O_maps: temp = normalization(O_map,M) temp = cv.resize(temp, (dim1_img//scaling, dim2_img//scaling), interpolation=cv.INTER_LINEAR) S += temp S = 1/3*S return S #Saliency map helper def normalization(X, M): max_val = np.max(X) #first step X = X*M/max_val #second step mask = X < M m_bar = np.mean(X[mask]) #third step return (M-m_bar)**2*X #For K-Means and Saliency Features def salience_matrix_conv(sal_mat,threshold,num_clusters,enhance_rate=2): norm_sal = sal_mat**enhance_rate/np.max(sal_mat**enhance_rate) mask = norm_sal < threshold norm_sal[mask] = 0 [dim1,dim2] = np.shape(sal_mat) mask = norm_sal >= threshold vecs = [] for i in range(dim1): for j in range(dim2): if norm_sal[i,j] == 0: continue else: vecs.append([i/dim1,j/dim2,norm_sal[i,j]]) vecs = np.array(vecs) km = KMeans(n_clusters=num_clusters, random_state=0, n_init=10).fit(vecs) return (vecs, km) def Center(X): ws = X[:,2].reshape(len(X[:,2]),1) ws = ws/np.sum(ws) loc = X[:,0:2] return np.sum(loc*ws,axis=0) def Cov_est(X, center): n = X.shape[0] loc = X[:,0:2] return np.matmul((loc-center).T,(loc-center))/n def Renyi_Entropy(P): n = len(P) Q = np.ones_like(P)/n return np.sum(P*np.log(P/Q))#-2*np.log(np.sum(np.sqrt(P*Q))) def img_clusters(num_clusters, img, kmeans_labels, k_means_centers, vecs, show_cluster=False): clusters = [] labels = [] scores = [] widths = [] pred = kmeans_labels for i in range(num_clusters): clusters.append(np.zeros_like(img)) labels.append(pred == i) for k in range(num_clusters): for item in vecs[labels[k]]: i,j,val = item i = int(i); j = int(j) clusters[k][i,j] = val scores.append(np.sum(clusters[k])) widths.append(np.linalg.det(Cov_est(vecs[labels[k]],Center(vecs[labels[k]])))) ind = np.argsort(-1*np.array(scores)) scores = np.array(scores)[ind] widths = np.array(widths)[ind] perc_S = np.array(scores)/sum(scores) D = 1/(Renyi_Entropy(perc_S)+0.001) if show_cluster: fig,ax = plt.subplots(1,num_clusters) for i in range(num_clusters): ax[i].imshow(clusters[i]) ax[i].axis('off') plt.savefig("clusters.png", bbox_inches='tight') plt.show() return (clusters,perc_S,widths,D) def weights_pages(ad_size, num_clusters): if ad_size == '1g': return np.concatenate((np.ones(num_clusters),0.2*np.ones(num_clusters))) elif ad_size == '1w': return np.ones(2*num_clusters) elif ad_size == 'hw': return np.concatenate((0.2*np.ones(num_clusters),np.ones(num_clusters))) else: return 0.5*np.ones(2*num_clusters) def ad_loc_indicator(ad_size): if ad_size == '1g': return 0 elif ad_size == '1w': return 2 elif ad_size == 'hw': return 1 else: return 3 def full_weights(ad_sizes, num_clusters): out = [] for ad_size in ad_sizes: out.append(weights_pages(ad_size,num_clusters)) return np.array(out) def ad_loc_indicator_full(ad_sizes): out = [] for ad_size in ad_sizes: out.append(ad_loc_indicator(ad_size)) return np.array(out) def filesize_individual(img_path): if type(img_path) == str: out = os.path.getsize(img_path)/1000 else: img = Image.fromarray(img_path) img_file = BytesIO() img.save(img_file, 'jpeg') out = img_file.tell() return out def KL_dist(P,Q): return np.sum(P*(np.log(P)-np.log(Q)),axis=1) def KL_score(y_pred,y_test): kde_pred = KernelDensity(kernel="gaussian", bandwidth=0.75).fit(y_pred.reshape(-1, 1)) log_dens_pred = kde_pred.score_samples(y_pred.reshape(-1, 1)) x = np.linspace(-10,10,num=100) kde_true = KernelDensity(kernel="gaussian", bandwidth=0.75).fit(y_test.reshape(-1, 1)) log_dens_true = kde_true.score_samples(y_test.reshape(-1, 1)) plt.plot(x,np.exp(kde_pred.score_samples(x.reshape(-1, 1))),label='pred') plt.plot(x,np.exp(kde_true.score_samples(x.reshape(-1, 1))),label='true') plt.legend() plt.show() return np.sum(np.exp(log_dens_pred)*(log_dens_pred-log_dens_true)) def medoid(X_in, d): temp = [] temp_d = [] for item in X_in: temp.append(np.sum(d(X_in-item))) temp_d.append(np.sum(d(X_in-item), axis=1)) return (np.argmin(temp), temp_d[np.argmin(temp)]) def sqr_dist(x): return np.multiply(x,x) def data_normalize(X_train,X_test): num_train = X_train.shape[0] m_train = np.sum(X_train,axis=0)/num_train s_train = np.sqrt(np.sum((X_train-m_train)**2,axis=0)) X_train_transf = (X_train-m_train)/s_train X_test_transf = (X_test-m_train)/s_train return X_train_transf, X_test_transf def typ_cat(medoids, X_test, category, d): ind_temp = np.arange(len(category)) ind_interest = ind_temp[np.array(category)==1][0] typ = np.sum(d(X_test-medoids[ind_interest]), axis=1) return typ #EAST Text Detection def text_detection_east(image, text_detection_model_path): orig = image.copy() (H, W) = image.shape[:2] (newW, newH) = (W, H) rW = W / float(newW) rH = H / float(newH) # resize the image and grab the new image dimensions image = cv.resize(image, (newW, newH)) (H, W) = image.shape[:2] # define the two output layer names for the EAST detector model that # we are interested -- the first is the output probabilities and the # second can be used to derive the bounding box coordinates of text layerNames = [ "feature_fusion/Conv_7/Sigmoid", "feature_fusion/concat_3"] # load the pre-trained EAST text detector print("[INFO] loading EAST text detector...") net = cv.dnn.readNet(text_detection_model_path) # construct a blob from the image and then perform a forward pass of # the model to obtain the two output layer sets blob = cv.dnn.blobFromImage(image, 1.0, (W, H), (123.68, 116.78, 103.94), swapRB=True, crop=False) start = time.time() net.setInput(blob) (scores, geometry) = net.forward(layerNames) end = time.time() # show timing information on text prediction print("[INFO] text detection took {:.6f} seconds".format(end - start)) # grab the number of rows and columns from the scores volume, then # initialize our set of bounding box rectangles and corresponding # confidence scores (numRows, numCols) = scores.shape[2:4] rects = [] confidences = [] # loop over the number of rows for y in range(0, numRows): # extract the scores (probabilities), followed by the geometrical # data used to derive potential bounding box coordinates that # surround text scoresData = scores[0, 0, y] xData0 = geometry[0, 0, y] xData1 = geometry[0, 1, y] xData2 = geometry[0, 2, y] xData3 = geometry[0, 3, y] anglesData = geometry[0, 4, y] # loop over the number of columns for x in range(0, numCols): # if our score does not have sufficient probability, ignore it if scoresData[x] < 0.5: continue # compute the offset factor as our resulting feature maps will # be 4x smaller than the input image (offsetX, offsetY) = (x * 4.0, y * 4.0) # extract the rotation angle for the prediction and then # compute the sin and cosine angle = anglesData[x] cos = np.cos(angle) sin = np.sin(angle) # use the geometry volume to derive the width and height of # the bounding box h = xData0[x] + xData2[x] w = xData1[x] + xData3[x] # compute both the starting and ending (x, y)-coordinates for # the text prediction bounding box endX = int(offsetX + (cos * xData1[x]) + (sin * xData2[x])) endY = int(offsetY - (sin * xData1[x]) + (cos * xData2[x])) startX = int(endX - w) startY = int(endY - h) # add the bounding box coordinates and probability score to # our respective lists rects.append((startX, startY, endX, endY)) confidences.append(scoresData[x]) # apply non-maxima suppression to suppress weak, overlapping bounding # boxes boxes = non_max_suppression(np.array(rects), probs=confidences) count = 0 for (x1, y1, x2, y2) in boxes: count += 1 return count #Texts and Objects def center_crop(img, dim): """Returns center cropped image Args: img: image to be center cropped dim: dimensions (width, height) to be cropped """ width, height = img.shape[1], img.shape[0] # process crop width and height for max available dimension crop_width = dim[0] if dim[0] 3: if item not in dutch_preposition and item not in stop_words: if item in ad_text_dic: ad_text_dic[item] += 1 else: ad_text_dic[item] = 1 return ad_text_dic def topic_features(ad_objs, ad_text_dic, dictionary, model, num_topics=20): corpus = [] #Object if len(ad_objs) > 0: for obj in list(ad_objs.keys()): corpus.append((dictionary[obj],len(ad_objs[obj][2]))) #Words if len(ad_text_dic) > 0: for word in list(ad_text_dic.keys()): if word in dictionary: corpus.append((dictionary[word],ad_text_dic[word])) #Topic weights ad_topic_weights = np.zeros(num_topics) aux = np.ones(num_topics) sum = 0 count = 0 for i,w in model[corpus]: aux[i] = 0 ad_topic_weights[i] = w sum += w count += 1 if num_topics-count != 0: ad_topic_weights = ad_topic_weights+(1-sum)/(num_topics-count)*aux return ad_topic_weights def object_and_topic_variables(ad_image, ctpg_image, has_ctpg, dictionary, dutch_preposition, language, model_obj, model_lda, num_topic=20): nltk.download('stopwords') stop_words = stopwords.words(language) #Ad ad_objs, ad_num_objs = ad_object_detection(model_obj, ad_image, crop_dim=600) ad_text_dic = ad_word_classes(ad_image, dutch_preposition, stop_words) ad_topic_weights = topic_features(ad_objs, ad_text_dic, dictionary, model_lda, num_topic) #Counterpage if has_ctpg: ctpg_objs, ctpg_num_objs = ad_object_detection(model_obj, ctpg_image, crop_dim=600) ctpg_text_dic = ad_word_classes(ctpg_image, dutch_preposition, stop_words) ctpg_topic_weights = topic_features(ctpg_objs, ctpg_text_dic, dictionary, model_lda, num_topic) else: ctpg_num_objs = 0 ctpg_topic_weights = np.ones(num_topic)/num_topic #Topic Difference Diff = KL_dist(ad_topic_weights.reshape(1,num_topic), ctpg_topic_weights.reshape(1,num_topic)) return ad_num_objs, ctpg_num_objs, ad_topic_weights, Diff def product_category(): global General_Category categories = np.array(list(General_Category.keys())) five_categories = [] for i in range(len(categories)//5): five_categories.append(list(categories[(5*i):(5*i+5)])) if len(categories)%5 > 0: i = i+1 five_categories.append(list(categories[(5*i):(5*i+5)])) #Create dictionary Name_to_Index_dict = {} for i in range(len(categories)): Name_to_Index_dict[categories[i]] = i #User Questions flag = True while flag: for i, item in enumerate(five_categories): print("list "+str(i+1)+" out of "+str(len(five_categories))) for j, cat in enumerate(item): print(str(j)+": "+cat) choice = input("Please choose the general category. If no good fit, please type N; otherwise, type the numbering: ") if choice == "N": print() continue else: choice = item[int(choice)] break confirm = input("If you have chosen successfully, please type Y or y; otherwise, please type any other key: ") if confirm == 'Y' or confirm == 'y': flag = False else: print('Please choose again.') #Output out = np.zeros(38) out[Name_to_Index_dict[choice]] = 1 return out def Region_Selection(img): As = [] while True: _, _, w, h = cv.selectROI("Select ROI", img, fromCenter=False, showCrosshair=False) As.append(w*h) ans = input("Continue? (y/n) ") if ans == 'n': break A = sum(As) return A def RMSRPD(y_pred, y_true): diff = y_pred - y_true den = 0.5*(np.abs(y_pred) + np.abs(y_true)) return np.sqrt(np.mean((diff/den)**2)) def Caption_Generation(image): #image is a PIL Image object with torch.no_grad(): model = AutoModel.from_pretrained('openbmb/MiniCPM-V-2', trust_remote_code=True, torch_dtype=torch.float16) model = model.to(device='cpu', dtype=torch.float32).eval() # model = AutoModel.from_pretrained('openbmb/MiniCPM-Llama3-V-2_5', trust_remote_code=True, torch_dtype=torch.float16) # model = model.to(device=torch.device("mps"), dtype=torch.float16) tokenizer = AutoTokenizer.from_pretrained('openbmb/MiniCPM-V-2', trust_remote_code=True) #'openbmb/MiniCPM-Llama3-V-2_5' # tokenizer = AutoTokenizer.from_pretrained('openbmb/MiniCPM-Llama3-V-2_5', trust_remote_code=True) #'openbmb/MiniCPM-Llama3-V-2_5' question = 'Describe the image in a paragraph. Please include details.' msgs = [{'role': 'user', 'content': question}] # curr = [] res = model.chat( image=image, context=None, msgs=msgs, tokenizer=tokenizer, sampling=True, # if sampling=False, beam_search will be used by default temperature=0.7, # system_prompt='' # pass system_prompt if needed ) return res[0] def Topic_emb(caption): with torch.no_grad(): model = SentenceTransformer("Magazine_Topic_Embedding_sample_size15").eval() embeddings = model.encode(caption).reshape(1,768) return embeddings