Spaces:
Running
Running
Demosthene-OR
commited on
Commit
·
5b68c01
1
Parent(s):
63af794
.....
Browse files- app.py +4 -3
- tabs/chatbot_tab.py +125 -0
- tabs/intro.py +1 -1
- tabs/sentence_similarity_tab.py +1 -354
- tabs/speech2text_tab.py +1 -1
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
-
import streamlit as st
|
2 |
import os.path
|
3 |
from collections import OrderedDict
|
4 |
-
from streamlit_option_menu import option_menu
|
5 |
# Define TITLE, TEAM_MEMBERS and PROMOTION values, in config.py.
|
6 |
import config
|
7 |
from tabs.custom_vectorizer import custom_tokenizer, custom_preprocessor
|
@@ -43,7 +43,7 @@ if st.session_state.Cloud == 0:
|
|
43 |
os.environ['PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION'] = 'python'
|
44 |
|
45 |
# Tabs in the ./tabs folder, imported here.
|
46 |
-
from tabs import intro, sentence_similarity_tab, speech2text_tab
|
47 |
|
48 |
|
49 |
with open("style.css", "r") as f:
|
@@ -60,6 +60,7 @@ TABS = OrderedDict(
|
|
60 |
(tr(intro.sidebar_name), intro),
|
61 |
(tr(sentence_similarity_tab.sidebar_name), sentence_similarity_tab),
|
62 |
(tr(speech2text_tab.sidebar_name), speech2text_tab),
|
|
|
63 |
]
|
64 |
)
|
65 |
|
|
|
1 |
+
import streamlit as st # type: ignore
|
2 |
import os.path
|
3 |
from collections import OrderedDict
|
4 |
+
from streamlit_option_menu import option_menu # type: ignore
|
5 |
# Define TITLE, TEAM_MEMBERS and PROMOTION values, in config.py.
|
6 |
import config
|
7 |
from tabs.custom_vectorizer import custom_tokenizer, custom_preprocessor
|
|
|
43 |
os.environ['PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION'] = 'python'
|
44 |
|
45 |
# Tabs in the ./tabs folder, imported here.
|
46 |
+
from tabs import intro, sentence_similarity_tab, speech2text_tab, chatbot_tab
|
47 |
|
48 |
|
49 |
with open("style.css", "r") as f:
|
|
|
60 |
(tr(intro.sidebar_name), intro),
|
61 |
(tr(sentence_similarity_tab.sidebar_name), sentence_similarity_tab),
|
62 |
(tr(speech2text_tab.sidebar_name), speech2text_tab),
|
63 |
+
(tr(chatbot_tab.sidebar_name), chatbot_tab),
|
64 |
]
|
65 |
)
|
66 |
|
tabs/chatbot_tab.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st # type: ignore
|
2 |
+
import os
|
3 |
+
from sentence_transformers import SentenceTransformer
|
4 |
+
from translate_app import tr
|
5 |
+
import getpass
|
6 |
+
from langchain_mistralai import ChatMistralAI
|
7 |
+
from langgraph.checkpoint.memory import MemorySaver
|
8 |
+
from langgraph.graph import START, END, MessagesState, StateGraph
|
9 |
+
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
10 |
+
from typing import Sequence
|
11 |
+
from langchain_core.messages import BaseMessage, SystemMessage, HumanMessage, AIMessage, trim_messages
|
12 |
+
from langgraph.graph.message import add_messages
|
13 |
+
from typing_extensions import Annotated, TypedDict
|
14 |
+
|
15 |
+
from dotenv import load_dotenv
|
16 |
+
import warnings
|
17 |
+
warnings.filterwarnings('ignore')
|
18 |
+
|
19 |
+
title = "Sales coaching"
|
20 |
+
sidebar_name = "Sales coaching"
|
21 |
+
dataPath = st.session_state.DataPath
|
22 |
+
|
23 |
+
os.environ["LANGCHAIN_TRACING_V2"] = "true"
|
24 |
+
os.environ["LANGCHAIN_ENDPOINT"]="https://api.smith.langchain.com"
|
25 |
+
os.environ["LANGCHAIN_HUB_API_URL"]="https://api.smith.langchain.com"
|
26 |
+
os.environ["LANGCHAIN_API_KEY"] = "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" # getpass.getpass()
|
27 |
+
os.environ["LANGCHAIN_PROJECT"] = "Sales Coaching Chatbot"
|
28 |
+
|
29 |
+
os.environ["MISTRAL_API_KEY"] = "W8q7N24HGM2ATpUdmB8rxrqkERtsxcuj"
|
30 |
+
|
31 |
+
model = ChatMistralAI(model="mistral-large-latest")
|
32 |
+
|
33 |
+
dataPath = st.session_state.DataPath
|
34 |
+
|
35 |
+
trimmer = trim_messages(
|
36 |
+
max_tokens=60,
|
37 |
+
strategy="last",
|
38 |
+
token_counter=model,
|
39 |
+
include_system=True,
|
40 |
+
allow_partial=False,
|
41 |
+
start_on="human",
|
42 |
+
)
|
43 |
+
|
44 |
+
prompt = ChatPromptTemplate.from_messages(
|
45 |
+
[
|
46 |
+
(
|
47 |
+
"system",
|
48 |
+
"You are a helpful assistant. Answer all questions to the best of your ability in {language}.",
|
49 |
+
),
|
50 |
+
MessagesPlaceholder(variable_name="messages"),
|
51 |
+
]
|
52 |
+
)
|
53 |
+
|
54 |
+
class State(TypedDict):
|
55 |
+
messages: Annotated[Sequence[BaseMessage], add_messages]
|
56 |
+
language: str
|
57 |
+
|
58 |
+
def call_model(state: State):
|
59 |
+
chain = prompt | model
|
60 |
+
trimmed_messages = trimmer.invoke(state["messages"])
|
61 |
+
response = chain.invoke(
|
62 |
+
{"messages": trimmed_messages, "language": state["language"]}
|
63 |
+
)
|
64 |
+
return {"messages": [response]}
|
65 |
+
|
66 |
+
# Define a new graph
|
67 |
+
workflow = StateGraph(state_schema=State)
|
68 |
+
|
69 |
+
# Define the (single) node in the graph
|
70 |
+
workflow.add_edge(START, "model")
|
71 |
+
workflow.add_node("model", call_model)
|
72 |
+
workflow.add_edge("model", END)
|
73 |
+
|
74 |
+
# Add memory
|
75 |
+
memory = MemorySaver()
|
76 |
+
app = workflow.compile(checkpointer=memory)
|
77 |
+
|
78 |
+
config = {"configurable": {"thread_id": "abc123"}}
|
79 |
+
|
80 |
+
def run():
|
81 |
+
|
82 |
+
st.write("")
|
83 |
+
st.title(tr(title))
|
84 |
+
|
85 |
+
|
86 |
+
messages = [
|
87 |
+
SystemMessage(content="you're a good assistant"),
|
88 |
+
HumanMessage(content="hi! I'm bob"),
|
89 |
+
AIMessage(content="hi!"),
|
90 |
+
HumanMessage(content="I like vanilla ice cream"),
|
91 |
+
AIMessage(content="nice"),
|
92 |
+
HumanMessage(content="whats 2 + 2"),
|
93 |
+
AIMessage(content="4"),
|
94 |
+
HumanMessage(content="thanks"),
|
95 |
+
AIMessage(content="no problem!"),
|
96 |
+
HumanMessage(content="having fun?"),
|
97 |
+
AIMessage(content="yes!"),
|
98 |
+
]
|
99 |
+
|
100 |
+
trimmer.invoke(messages)
|
101 |
+
|
102 |
+
query = "Hi I'm Todd, please tell me a joke."
|
103 |
+
language = "French"
|
104 |
+
|
105 |
+
input_messages = [HumanMessage(query)]
|
106 |
+
for chunk, metadata in app.stream(
|
107 |
+
{"messages": input_messages, "language": language},
|
108 |
+
config,
|
109 |
+
stream_mode="messages",
|
110 |
+
):
|
111 |
+
if isinstance(chunk, AIMessage): # Filter to just model responses
|
112 |
+
st.write(chunk.content, end="")
|
113 |
+
|
114 |
+
'''
|
115 |
+
sentences = ["This is an example sentence", "Each sentence is converted"]
|
116 |
+
sentences[0] = st.text_area(label=tr("Saisir un élément issu de la proposition de valeur (quelque soit la langue):"), value="This is an example sentence")
|
117 |
+
sentences[1] = st.text_area(label=tr("Saisir une phrase issue de l'acte de vente (quelque soit la langue):"), value="Each sentence is converted", height=200)
|
118 |
+
st.button(label=tr("Validez"), type="primary")
|
119 |
+
|
120 |
+
st.write(tr("Transformation de chaque phrase en vecteur (dimension = 384 ):"))
|
121 |
+
'''
|
122 |
+
st.write("")
|
123 |
+
st.write("")
|
124 |
+
st.write("")
|
125 |
+
st.write("")
|
tabs/intro.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
import streamlit as st
|
2 |
from translate_app import tr
|
3 |
|
4 |
title = "Value Props"
|
|
|
1 |
+
import streamlit as st # type: ignore
|
2 |
from translate_app import tr
|
3 |
|
4 |
title = "Value Props"
|
tabs/sentence_similarity_tab.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
import streamlit as st
|
2 |
from PIL import Image
|
3 |
import os
|
4 |
import ast
|
@@ -6,14 +6,8 @@ import contextlib
|
|
6 |
import numpy as np
|
7 |
import pandas as pd
|
8 |
import matplotlib.pyplot as plt
|
9 |
-
import seaborn as sns
|
10 |
-
from wordcloud import WordCloud
|
11 |
-
import nltk
|
12 |
from nltk.corpus import stopwords
|
13 |
-
from gensim import corpora
|
14 |
-
import networkx as nx
|
15 |
from sklearn.manifold import TSNE
|
16 |
-
from gensim.models import KeyedVectors
|
17 |
from sentence_transformers import SentenceTransformer
|
18 |
from sklearn.metrics.pairwise import cosine_similarity
|
19 |
from translate_app import tr
|
@@ -23,354 +17,7 @@ sidebar_name = "Sentence Similarity"
|
|
23 |
dataPath = st.session_state.DataPath
|
24 |
|
25 |
|
26 |
-
|
27 |
-
'''
|
28 |
-
with contextlib.redirect_stdout(open(os.devnull, "w")):
|
29 |
-
nltk.download('stopwords')
|
30 |
-
|
31 |
-
# Première ligne à charger
|
32 |
-
first_line = 0
|
33 |
-
# Nombre maximum de lignes à charger
|
34 |
-
max_lines = 140000
|
35 |
-
if ((first_line+max_lines)>137860):
|
36 |
-
max_lines = max(137860-first_line ,0)
|
37 |
-
# Nombre maximum de ligne à afficher pour les DataFrame
|
38 |
-
max_lines_to_display = 50
|
39 |
-
|
40 |
-
@st.cache_data
|
41 |
-
def load_data(path):
|
42 |
-
|
43 |
-
input_file = os.path.join(path)
|
44 |
-
with open(input_file, "r", encoding="utf-8") as f:
|
45 |
-
data = f.read()
|
46 |
-
|
47 |
-
# On convertit les majuscules en minulcule
|
48 |
-
data = data.lower()
|
49 |
-
|
50 |
-
data = data.split('\n')
|
51 |
-
return data[first_line:min(len(data),first_line+max_lines)]
|
52 |
-
|
53 |
-
@st.cache_data
|
54 |
-
def load_preprocessed_data(path,data_type):
|
55 |
-
|
56 |
-
input_file = os.path.join(path)
|
57 |
-
if data_type == 1:
|
58 |
-
return pd.read_csv(input_file, encoding="utf-8", index_col=0)
|
59 |
-
else:
|
60 |
-
with open(input_file, "r", encoding="utf-8") as f:
|
61 |
-
data = f.read()
|
62 |
-
data = data.split('\n')
|
63 |
-
if data_type==0:
|
64 |
-
data=data[:-1]
|
65 |
-
elif data_type == 2:
|
66 |
-
data=[eval(i) for i in data[:-1]]
|
67 |
-
elif data_type ==3:
|
68 |
-
data2 = []
|
69 |
-
for d in data[:-1]:
|
70 |
-
data2.append(ast.literal_eval(d))
|
71 |
-
data=data2
|
72 |
-
return data
|
73 |
-
|
74 |
-
@st.cache_data
|
75 |
-
def load_all_preprocessed_data(lang):
|
76 |
-
txt =load_preprocessed_data(dataPath+'/preprocess_txt_'+lang,0)
|
77 |
-
corpus =load_preprocessed_data(dataPath+'/preprocess_corpus_'+lang,0)
|
78 |
-
txt_split = load_preprocessed_data(dataPath+'/preprocess_txt_split_'+lang,3)
|
79 |
-
df_count_word = pd.concat([load_preprocessed_data(dataPath+'/preprocess_df_count_word1_'+lang,1), load_preprocessed_data(dataPath+'/preprocess_df_count_word2_'+lang,1)])
|
80 |
-
sent_len =load_preprocessed_data(dataPath+'/preprocess_sent_len_'+lang,2)
|
81 |
-
vec_model= KeyedVectors.load_word2vec_format(dataPath+'/mini.wiki.'+lang+'.align.vec')
|
82 |
-
return txt, corpus, txt_split, df_count_word,sent_len, vec_model
|
83 |
-
|
84 |
-
#Chargement des textes complet dans les 2 langues
|
85 |
-
full_txt_en, full_corpus_en, full_txt_split_en, full_df_count_word_en,full_sent_len_en, vec_model_en = load_all_preprocessed_data('en')
|
86 |
-
full_txt_fr, full_corpus_fr, full_txt_split_fr, full_df_count_word_fr,full_sent_len_fr, vec_model_fr = load_all_preprocessed_data('fr')
|
87 |
-
|
88 |
-
|
89 |
-
def plot_word_cloud(text, title, masque, stop_words, background_color = "white"):
|
90 |
-
|
91 |
-
mask_coloring = np.array(Image.open(str(masque)))
|
92 |
-
# Définir le calque du nuage des mots
|
93 |
-
wc = WordCloud(background_color=background_color, max_words=200,
|
94 |
-
stopwords=stop_words, mask = mask_coloring,
|
95 |
-
max_font_size=50, random_state=42)
|
96 |
-
# Générer et afficher le nuage de mots
|
97 |
-
fig=plt.figure(figsize= (20,10))
|
98 |
-
plt.title(tr(title), fontsize=25, color="green")
|
99 |
-
wc.generate(text)
|
100 |
-
|
101 |
-
# getting current axes
|
102 |
-
a = plt.gca()
|
103 |
-
|
104 |
-
# set visibility of x-axis as False
|
105 |
-
xax = a.axes.get_xaxis()
|
106 |
-
xax = xax.set_visible(False)
|
107 |
-
|
108 |
-
# set visibility of y-axis as False
|
109 |
-
yax = a.axes.get_yaxis()
|
110 |
-
yax = yax.set_visible(False)
|
111 |
-
|
112 |
-
plt.imshow(wc)
|
113 |
-
# plt.show()
|
114 |
-
st.pyplot(fig)
|
115 |
-
|
116 |
-
def drop_df_null_col(df):
|
117 |
-
# Check if all values in each column are 0
|
118 |
-
columns_to_drop = df.columns[df.eq(0).all()]
|
119 |
-
# Drop the columns with all values as 0
|
120 |
-
return df.drop(columns=columns_to_drop)
|
121 |
-
|
122 |
-
def calcul_occurence(df_count_word):
|
123 |
-
nb_occurences = pd.DataFrame(df_count_word.sum().sort_values(axis=0,ascending=False))
|
124 |
-
nb_occurences.columns = ['occurences']
|
125 |
-
nb_occurences.index.name = 'mot'
|
126 |
-
nb_occurences['mots'] = nb_occurences.index
|
127 |
-
return nb_occurences
|
128 |
-
|
129 |
-
def dist_frequence_mots(df_count_word):
|
130 |
-
|
131 |
-
df_count_word = drop_df_null_col(df_count_word)
|
132 |
-
nb_occurences = calcul_occurence(df_count_word)
|
133 |
-
|
134 |
-
sns.set()
|
135 |
-
fig = plt.figure() #figsize=(4,4)
|
136 |
-
plt.title(tr("Nombre d'apparitions des mots"), fontsize=16)
|
137 |
-
|
138 |
-
chart = sns.barplot(x='mots',y='occurences',data=nb_occurences.iloc[:40]);
|
139 |
-
chart.set_xticklabels(chart.get_xticklabels(), rotation=45, horizontalalignment='right', size=8)
|
140 |
-
st.pyplot(fig)
|
141 |
-
|
142 |
-
def dist_longueur_phrase(sent_len,sent_len2, lang1, lang2 ):
|
143 |
-
|
144 |
-
df = pd.DataFrame({lang1:sent_len,lang2:sent_len2})
|
145 |
-
sns.set()
|
146 |
-
fig = plt.figure() # figsize=(12, 6*row_nb)
|
147 |
-
|
148 |
-
fig.tight_layout()
|
149 |
-
chart = sns.histplot(df, color=['r','b'], label=[lang1,lang2], binwidth=1, binrange=[2,22], element="step",
|
150 |
-
common_norm=False, multiple="layer", discrete=True, stat='proportion')
|
151 |
-
plt.xticks([2,4,6,8,10,12,14,16,18,20,22])
|
152 |
-
chart.set(title=tr('Distribution du nombre de mots sur '+str(len(sent_len))+' phrase(s)'));
|
153 |
-
st.pyplot(fig)
|
154 |
-
|
155 |
-
|
156 |
-
def find_color(x,min_w,max_w):
|
157 |
-
b_min = 0.0*(max_w-min_w)+min_w
|
158 |
-
b_max = 0.05*(max_w-min_w)+min_w
|
159 |
-
x = max(x,b_min)
|
160 |
-
x = min(b_max, x)
|
161 |
-
c = (x - b_min)/(b_max-b_min)
|
162 |
-
return round(c)
|
163 |
-
|
164 |
-
def graphe_co_occurence(txt_split,corpus):
|
165 |
-
|
166 |
-
dic = corpora.Dictionary(txt_split) # dictionnaire de tous les mots restant dans le token
|
167 |
-
# Equivalent (ou presque) de la DTM : DFM, Document Feature Matrix
|
168 |
-
dfm = [dic.doc2bow(tok) for tok in txt_split]
|
169 |
-
|
170 |
-
mes_labels = [k for k, v in dic.token2id.items()]
|
171 |
-
|
172 |
-
from gensim.matutils import corpus2csc
|
173 |
-
term_matrice = corpus2csc(dfm)
|
174 |
-
|
175 |
-
term_matrice = np.dot(term_matrice, term_matrice.T)
|
176 |
-
|
177 |
-
for i in range(len(mes_labels)):
|
178 |
-
term_matrice[i,i]= 0
|
179 |
-
term_matrice.eliminate_zeros()
|
180 |
-
|
181 |
-
G = nx.from_scipy_sparse_matrix(term_matrice)
|
182 |
-
G.add_nodes = dic
|
183 |
-
pos=nx.spring_layout(G, k=5) # position des nodes
|
184 |
-
|
185 |
-
importance = dict(nx.degree(G))
|
186 |
-
importance = [round((v**1.3)) for v in importance.values()]
|
187 |
-
edges,weights = zip(*nx.get_edge_attributes(G,'weight').items())
|
188 |
-
max_w = max(weights)
|
189 |
-
min_w = min(weights)
|
190 |
-
edge_color = [find_color(weights[i],min_w,max_w) for i in range(len(weights))]
|
191 |
-
width = [(weights[i]-min_w)*3.4/(max_w-min_w)+0.2 for i in range(len(weights))]
|
192 |
-
alpha = [(weights[i]-min_w)*0.3/(max_w-min_w)+0.3 for i in range(len(weights))]
|
193 |
-
|
194 |
-
fig = plt.figure();
|
195 |
-
|
196 |
-
nx.draw_networkx_labels(G,pos,dic,font_size=8, font_color='b', font_weight='bold')
|
197 |
-
nx.draw_networkx_nodes(G,pos, dic, \
|
198 |
-
node_color= importance, # range(len(importance)), #"tab:red", \
|
199 |
-
node_size=importance, \
|
200 |
-
cmap=plt.cm.RdYlGn, #plt.cm.Reds_r, \
|
201 |
-
alpha=0.4);
|
202 |
-
nx.draw_networkx_edges(G,pos,width=width,edge_color=edge_color, alpha=alpha,edge_cmap=plt.cm.RdYlGn) # [1] * len(width)
|
203 |
-
|
204 |
-
plt.axis("off");
|
205 |
-
st.pyplot(fig)
|
206 |
-
|
207 |
-
def proximite():
|
208 |
-
global vec_model_en,vec_model_fr
|
209 |
-
|
210 |
-
# Creates and TSNE model and plots it"
|
211 |
-
labels = []
|
212 |
-
tokens = []
|
213 |
-
|
214 |
-
nb_words = st.slider(tr('Nombre de mots à afficher')+' :',10,50, value=20)
|
215 |
-
df = pd.read_csv(dataPath+'/dict_we_en_fr',header=0,index_col=0, encoding ="utf-8", keep_default_na=False)
|
216 |
-
words_en = df.index.to_list()[:nb_words]
|
217 |
-
words_fr = df['Francais'].to_list()[:nb_words]
|
218 |
-
|
219 |
-
for word in words_en:
|
220 |
-
tokens.append(vec_model_en[word])
|
221 |
-
labels.append(word)
|
222 |
-
for word in words_fr:
|
223 |
-
tokens.append(vec_model_fr[word])
|
224 |
-
labels.append(word)
|
225 |
-
tokens = pd.DataFrame(tokens)
|
226 |
-
|
227 |
-
tsne_model = TSNE(perplexity=10, n_components=2, init='pca', n_iter=2000, random_state=23)
|
228 |
-
new_values = tsne_model.fit_transform(tokens)
|
229 |
-
|
230 |
-
fig =plt.figure(figsize=(16, 16))
|
231 |
-
x = []
|
232 |
-
y = []
|
233 |
-
for value in new_values:
|
234 |
-
x.append(value[0])
|
235 |
-
y.append(value[1])
|
236 |
-
|
237 |
-
for i in range(len(x)):
|
238 |
-
if i<nb_words : color='green'
|
239 |
-
else: color='blue'
|
240 |
-
plt.scatter(x[i],y[i])
|
241 |
-
plt.annotate(labels[i],
|
242 |
-
xy=(x[i], y[i]),
|
243 |
-
xytext=(5, 2),
|
244 |
-
textcoords='offset points',
|
245 |
-
ha='right',
|
246 |
-
va='bottom',
|
247 |
-
color= color,
|
248 |
-
size=20)
|
249 |
-
plt.title(tr("Proximité des mots anglais avec leur traduction"), fontsize=30, color="green")
|
250 |
-
plt.legend(loc='best');
|
251 |
-
st.pyplot(fig)
|
252 |
-
'''
|
253 |
-
|
254 |
def run():
|
255 |
-
|
256 |
-
'''
|
257 |
-
global max_lines, first_line, Langue
|
258 |
-
global full_txt_en, full_corpus_en, full_txt_split_en, full_df_count_word_en,full_sent_len_en, vec_model_en
|
259 |
-
global full_txt_fr, full_corpus_fr, full_txt_split_fr, full_df_count_word_fr,full_sent_len_fr, vec_model_fr
|
260 |
-
|
261 |
-
st.write("")
|
262 |
-
st.title(tr(title))
|
263 |
-
|
264 |
-
#
|
265 |
-
st.write("## **"+tr("Paramètres")+" :**\n")
|
266 |
-
Langue = st.radio(tr('Langue:'),('Anglais','Français'), horizontal=True)
|
267 |
-
first_line = st.slider(tr('No de la premiere ligne à analyser')+' :',0,137859)
|
268 |
-
max_lines = st.select_slider(tr('Nombre de lignes à analyser')+' :',
|
269 |
-
options=[1,5,10,15,100, 500, 1000,'Max'])
|
270 |
-
if max_lines=='Max':
|
271 |
-
max_lines=137860
|
272 |
-
if ((first_line+max_lines)>137860):
|
273 |
-
max_lines = max(137860-first_line,0)
|
274 |
-
|
275 |
-
# Chargement des textes sélectionnés (max lignes = max_lines)
|
276 |
-
last_line = first_line+max_lines
|
277 |
-
if (Langue == 'Anglais'):
|
278 |
-
txt_en = full_txt_en[first_line:last_line]
|
279 |
-
corpus_en = full_corpus_en[first_line:last_line]
|
280 |
-
txt_split_en = full_txt_split_en[first_line:last_line]
|
281 |
-
df_count_word_en =full_df_count_word_en.loc[first_line:last_line-1]
|
282 |
-
sent_len_en = full_sent_len_en[first_line:last_line]
|
283 |
-
sent_len_fr = full_sent_len_fr[first_line:last_line]
|
284 |
-
else:
|
285 |
-
txt_fr = full_txt_fr[first_line:last_line]
|
286 |
-
corpus_fr = full_corpus_fr[first_line:last_line]
|
287 |
-
txt_split_fr = full_txt_split_fr[first_line:last_line]
|
288 |
-
df_count_word_fr =full_df_count_word_fr.loc[first_line:last_line-1]
|
289 |
-
sent_len_fr = full_sent_len_fr[first_line:last_line]
|
290 |
-
sent_len_en = full_sent_len_en[first_line:last_line]
|
291 |
-
|
292 |
-
if (Langue=='Anglais'):
|
293 |
-
st.dataframe(pd.DataFrame(data=full_txt_en,columns=['Texte']).loc[first_line:last_line-1].head(max_lines_to_display), width=800)
|
294 |
-
else:
|
295 |
-
st.dataframe(pd.DataFrame(data=full_txt_fr,columns=['Texte']).loc[first_line:last_line-1].head(max_lines_to_display), width=800)
|
296 |
-
st.write("")
|
297 |
-
|
298 |
-
tab1, tab2, tab3, tab4, tab5 = st.tabs([tr("World Cloud"), tr("Frequence"),tr("Distribution longueur"), tr("Co-occurence"), tr("Proximité")])
|
299 |
-
|
300 |
-
with tab1:
|
301 |
-
st.subheader(tr("World Cloud"))
|
302 |
-
st.markdown(tr(
|
303 |
-
"""
|
304 |
-
On remarque, en changeant de langue, que certains mot de taille importante dans une langue,
|
305 |
-
apparaissent avec une taille identique dans l'autre langue.
|
306 |
-
La traduction mot à mot sera donc peut-être bonne.
|
307 |
-
""")
|
308 |
-
)
|
309 |
-
if (Langue == 'Anglais'):
|
310 |
-
text = ""
|
311 |
-
# Initialiser la variable des mots vides
|
312 |
-
stop_words = set(stopwords.words('english'))
|
313 |
-
for e in txt_en : text += e
|
314 |
-
plot_word_cloud(text, "English words corpus", st.session_state.ImagePath+"/coeur.png", stop_words)
|
315 |
-
else:
|
316 |
-
text = ""
|
317 |
-
# Initialiser la variable des mots vides
|
318 |
-
stop_words = set(stopwords.words('french'))
|
319 |
-
for e in txt_fr : text += e
|
320 |
-
plot_word_cloud(text,"Mots français du corpus", st.session_state.ImagePath+"/coeur.png", stop_words)
|
321 |
-
|
322 |
-
with tab2:
|
323 |
-
st.subheader(tr("Frequence d'apparition des mots"))
|
324 |
-
st.markdown(tr(
|
325 |
-
"""
|
326 |
-
On remarque, en changeant de langue, que certains mot fréquents dans une langue,
|
327 |
-
apparaissent aussi fréquemment dans l'autre langue.
|
328 |
-
Cela peut nous laisser penser que la traduction mot à mot sera peut-être bonne.
|
329 |
-
""")
|
330 |
-
)
|
331 |
-
if (Langue == 'Anglais'):
|
332 |
-
dist_frequence_mots(df_count_word_en)
|
333 |
-
else:
|
334 |
-
dist_frequence_mots(df_count_word_fr)
|
335 |
-
with tab3:
|
336 |
-
st.subheader(tr("Distribution des longueurs de phrases"))
|
337 |
-
st.markdown(tr(
|
338 |
-
"""
|
339 |
-
Malgré quelques différences entre les 2 langues (les phrases anglaises sont généralement un peu plus courtes),
|
340 |
-
on constate une certaine similitude dans les ditributions de longueur de phrases.
|
341 |
-
Cela peut nous laisser penser que la traduction mot à mot ne sera pas si mauvaise.
|
342 |
-
""")
|
343 |
-
)
|
344 |
-
if (Langue == 'Anglais'):
|
345 |
-
dist_longueur_phrase(sent_len_en, sent_len_fr, 'Anglais','Français')
|
346 |
-
else:
|
347 |
-
dist_longueur_phrase(sent_len_fr, sent_len_en, 'Français', 'Anglais')
|
348 |
-
with tab4:
|
349 |
-
st.subheader(tr("Co-occurence des mots dans une phrase"))
|
350 |
-
if (Langue == 'Anglais'):
|
351 |
-
graphe_co_occurence(txt_split_en[:1000],corpus_en)
|
352 |
-
else:
|
353 |
-
graphe_co_occurence(txt_split_fr[:1000],corpus_fr)
|
354 |
-
with tab5:
|
355 |
-
st.subheader(tr("Proximité sémantique des mots (Word Embedding)") )
|
356 |
-
st.markdown(tr(
|
357 |
-
"""
|
358 |
-
MUSE est une bibliothèque Python pour l'intégration de mots multilingues, qui fournit
|
359 |
-
notamment des "Word Embedding" multilingues
|
360 |
-
Facebook fournit des dictionnaires de référence. Ces embeddings sont des embeddings fastText Wikipedia pour 30 langues qui ont été alignés dans un espace espace vectoriel unique.
|
361 |
-
Dans notre cas, nous avons utilisé 2 mini-dictionnaires d'environ 3000 mots (Français et Anglais).
|
362 |
-
|
363 |
-
""")
|
364 |
-
)
|
365 |
-
st.markdown(tr(
|
366 |
-
"""
|
367 |
-
En novembre 2015, l'équipe de recherche de Facebook a créé fastText qui est une extension de la bibliothèque word2vec.
|
368 |
-
Elle s'appuie sur Word2Vec en apprenant des représentations vectorielles pour chaque mot et les n-grammes trouvés dans chaque mot.
|
369 |
-
""")
|
370 |
-
)
|
371 |
-
st.write("")
|
372 |
-
proximite()
|
373 |
-
'''
|
374 |
st.write("")
|
375 |
st.title(tr(title))
|
376 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
|
|
1 |
+
import streamlit as st # type: ignore
|
2 |
from PIL import Image
|
3 |
import os
|
4 |
import ast
|
|
|
6 |
import numpy as np
|
7 |
import pandas as pd
|
8 |
import matplotlib.pyplot as plt
|
|
|
|
|
|
|
9 |
from nltk.corpus import stopwords
|
|
|
|
|
10 |
from sklearn.manifold import TSNE
|
|
|
11 |
from sentence_transformers import SentenceTransformer
|
12 |
from sklearn.metrics.pairwise import cosine_similarity
|
13 |
from translate_app import tr
|
|
|
17 |
dataPath = st.session_state.DataPath
|
18 |
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
def run():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
st.write("")
|
22 |
st.title(tr(title))
|
23 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
tabs/speech2text_tab.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
import streamlit as st
|
2 |
import os
|
3 |
import pandas as pd
|
4 |
import collections
|
|
|
1 |
+
import streamlit as st # type: ignore
|
2 |
import os
|
3 |
import pandas as pd
|
4 |
import collections
|