import streamlit as st # type: ignore import os.path from collections import OrderedDict from streamlit_option_menu import option_menu # type: ignore # Define TITLE, TEAM_MEMBERS and PROMOTION values, in config.py. import config from tabs.custom_vectorizer import custom_tokenizer, custom_preprocessor import os from translate_app import tr # Initialize a session state variable that tracks the sidebar state (either 'expanded' or 'collapsed'). if 'sidebar_state' not in st.session_state: st.session_state.sidebar_state = 'expanded' else: st.session_state.sidebar_state = 'auto' st.set_page_config ( page_title=config.TITLE, page_icon= "assets/faviconV2.png", layout="wide", initial_sidebar_state=st.session_state.sidebar_state ) # Si l'application tourne localement, session_state.Cloud == 0 # Si elle tourne sur le Cloud de Hugging Face, ==1 st.session_state.Cloud = 1 # En fonction de la valeur de varible précédente, le data path est différent if st.session_state.Cloud == 0: st.session_state.DataPath = "../data" st.session_state.ImagePath = "../images" st.session_state.reCalcule = False else: st.session_state.DataPath = "data" st.session_state.ImagePath = "images" st.session_state.reCalcule = False # Define the root folders depending on local/cloud run # thisfile = os.path.abspath(__file__) # if ('/' in thisfile): # os.chdir(os.path.dirname(thisfile)) # Nécessaire pour la version windows 11 if st.session_state.Cloud == 0: os.environ['PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION'] = 'python' # Tabs in the ./tabs folder, imported here. from tabs import intro, sentence_similarity_tab, speech2text_tab, chatbot_tab with open("style.css", "r") as f: style = f.read() st.markdown(f"", unsafe_allow_html=True) # Add tab in this ordered dict by # passing the name in the sidebar as key and the imported tab # as value as follow : TABS = OrderedDict( [ (tr(intro.sidebar_name), intro), (tr(chatbot_tab.sidebar_name), chatbot_tab), (tr(sentence_similarity_tab.sidebar_name), sentence_similarity_tab), # (tr(speech2text_tab.sidebar_name), speech2text_tab), ] ) # Utilisation du module deep_translator lang_tgt = ['fr', 'en','de','es', 'it', 'nl'] label_lang = ['Français','English','Deutsch','Español','Italiano','Nederlands'] label_lang_en = ['French', 'English', 'German', 'Spanish', 'Italian', 'Dutch'] # @st.cache_data def find_lang_label(lang_sel): global lang_tgt, label_lang return label_lang[lang_tgt.index(lang_sel)] # @st.cache_data def find_lang_label_en(lang_sel): global lang_tgt, label_lang_en return label_lang_en[lang_tgt.index(lang_sel)] def run(): st.sidebar.image( "assets/value_props_logo.png", width=270, ) with st.sidebar.expander(":red[**"+tr("Développez moi")+"**]"): # st.markdown(f"", unsafe_allow_html=True) st.markdown(tr(""" :red[Cette application vous permet de tester les futures fonctionnalités de la plateforme Value Props, et plus particulièrement le «Sales Coaching». Amusez vous bien !] """)) with st.sidebar: tab_name = option_menu(None, list(TABS.keys()), # icons=['house', 'bi-binoculars', 'bi bi-graph-up', 'bi-chat-right-text','bi-book', 'bi-body-text'], menu_icon="cast", default_index=0, icons=['house', 'binoculars', 'graph-up', 'search','book', 'chat-right-text','controller'], menu_icon="cast", default_index=0, styles={"container": {"padding": "0!important","background-color": "#10b8dd", "border-radius": "0!important"}, "nav-link": {"font-size": "1rem", "text-align": "left", "margin":"0em", "padding": "0em", "padding-left": "0.2em", "--hover-color": "#eee", "font-weight": "400", "font-family": "Source Sans Pro, sans-serif"} }) # tab_name = st.sidebar.radio("", list(TABS.keys()), 0) st.sidebar.markdown("---") st.sidebar.markdown(f"## {tr(config.PROMOTION)}") st.sidebar.markdown("### "+tr("Auteur:")) for member in config.TEAM_MEMBERS: st.sidebar.markdown(member.sidebar_markdown(), unsafe_allow_html=True) with st.sidebar: st.write("") llm_choice = st.selectbox(tr("Modèle :"),["Mistral large","OpenAI 3.5","OpenAI 4o"], label_visibility="visible") if (llm_choice == "OpenAI 3.5") : st.session_state.model = "gpt-3.5-turbo" elif (llm_choice == "OpenAI 4o") : st.session_state.model = "gpt-4o" else: st.session_state.model = "mistral-large-latest" if (llm_choice in ["OpenAI 3.5","OpenAI 4o"]) and ('OPENAI_API_KEY' not in st.session_state): # Set OpenAI API key st.sidebar.subheader("OpenAI API Key") openai_api_key = st.sidebar.text_input(tr("Saisissez votre Clé API OpenAI:"), type='password') if openai_api_key: os.environ['OPENAI_API_KEY'] = openai_api_key st.session_state['OPENAI_API_KEY'] = openai_api_key st.sidebar.success("OpenAI API Key set successfully.") st.session_state.model = "mistral-large-latest" with st.sidebar: l = st.selectbox("langue:",lang_tgt, format_func = find_lang_label, key="Language", label_visibility="hidden") st.session_state.language_label = find_lang_label_en(l) tab = TABS[tab_name] tab.run() if __name__ == "__main__": run()