File size: 14,116 Bytes
cb4b492 40a3d50 2eb8138 40a3d50 cb4b492 17f4cff cb4b492 40a3d50 cb4b492 40a3d50 dcf791a ad799ea 40a3d50 0804813 40a3d50 0804813 40a3d50 6b65ad0 40a3d50 19d2b13 40a3d50 3951193 40a3d50 6b65ad0 dcf791a 40a3d50 1157ef0 40a3d50 6b65ad0 40a3d50 dcf791a 40a3d50 6b65ad0 40a3d50 6b65ad0 e5c5c99 cb4b492 2b50631 cb4b492 51e43d8 cb4b492 1157ef0 cb4b492 5e30142 cb4b492 daea820 6b65ad0 1036c97 cb4b492 1036c97 cb4b492 2b50631 cb4b492 40a3d50 dcf791a 6b65ad0 17f4cff dcf791a 40a3d50 dcf791a dea6b5e dcf791a 172ea8a dcf791a daea820 dcf791a d5bb204 b11246e dcf791a d5bb204 b11246e dcf791a 4689693 dcf791a 172ea8a dcf791a daea820 dcf791a ad799ea 6b65ad0 dcf791a ad799ea 6b65ad0 dcf791a ad799ea 5e30142 e9caa0f ad799ea e9caa0f ad799ea e9caa0f ad799ea e9caa0f ad799ea e9caa0f d67826b e9491b8 351b68b 6b65ad0 ce16949 1469d3f 3a31df1 1469d3f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 |
from fastapi import FastAPI, HTTPException, Header, Depends, Request, Response, Query
from fastapi.responses import JSONResponse
from fastapi.security import HTTPBasic, HTTPBasicCredentials
from fastapi.exceptions import RequestValidationError
import asyncio
from typing import Optional, List
from pydantic import BaseModel, ValidationError
import pandas as pd
import numpy as np
import os
from filesplit.merge import Merge
import tensorflow as tf
import string
import re
import json
import csv
import tiktoken
from sklearn.preprocessing import LabelEncoder
from tensorflow import keras
from keras_nlp.layers import TransformerEncoder
from tensorflow.keras import layers
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.utils import plot_model
api = FastAPI()
dataPath = "data"
imagePath = "images"
# ===== Keras ====
strip_chars = string.punctuation + "¿"
strip_chars = strip_chars.replace("[", "")
strip_chars = strip_chars.replace("]", "")
def custom_standardization(input_string):
lowercase = tf.strings.lower(input_string)
lowercase=tf.strings.regex_replace(lowercase, "[à]", "a")
return tf.strings.regex_replace(
lowercase, f"[{re.escape(strip_chars)}]", "")
def load_vocab(file_path):
with open(file_path, "r", encoding="utf-8") as file:
return file.read().split('\n')[:-1]
def decode_sequence_rnn(input_sentence, src, tgt):
global translation_model
vocab_size = 15000
sequence_length = 50
source_vectorization = layers.TextVectorization(
max_tokens=vocab_size,
output_mode="int",
output_sequence_length=sequence_length,
standardize=custom_standardization,
vocabulary = load_vocab(dataPath+"/vocab_"+src+".txt"),
)
target_vectorization = layers.TextVectorization(
max_tokens=vocab_size,
output_mode="int",
output_sequence_length=sequence_length + 1,
standardize=custom_standardization,
vocabulary = load_vocab(dataPath+"/vocab_"+tgt+".txt"),
)
tgt_vocab = target_vectorization.get_vocabulary()
tgt_index_lookup = dict(zip(range(len(tgt_vocab)), tgt_vocab))
max_decoded_sentence_length = 50
tokenized_input_sentence = source_vectorization([input_sentence])
decoded_sentence = "[start]"
for i in range(max_decoded_sentence_length):
tokenized_target_sentence = target_vectorization([decoded_sentence])
next_token_predictions = translation_model.predict(
[tokenized_input_sentence, tokenized_target_sentence], verbose=0)
sampled_token_index = np.argmax(next_token_predictions[0, i, :])
sampled_token = tgt_index_lookup[sampled_token_index]
decoded_sentence += " " + sampled_token
if sampled_token == "[end]":
break
return decoded_sentence[8:-6]
# ===== Enf of Keras ====
# ===== Transformer section ====
class TransformerDecoder(layers.Layer):
def __init__(self, embed_dim, dense_dim, num_heads, **kwargs):
super().__init__(**kwargs)
self.embed_dim = embed_dim
self.dense_dim = dense_dim
self.num_heads = num_heads
self.attention_1 = layers.MultiHeadAttention(
num_heads=num_heads, key_dim=embed_dim)
self.attention_2 = layers.MultiHeadAttention(
num_heads=num_heads, key_dim=embed_dim)
self.dense_proj = keras.Sequential(
[layers.Dense(dense_dim, activation="relu"),
layers.Dense(embed_dim),]
)
self.layernorm_1 = layers.LayerNormalization()
self.layernorm_2 = layers.LayerNormalization()
self.layernorm_3 = layers.LayerNormalization()
self.supports_masking = True
def get_config(self):
config = super().get_config()
config.update({
"embed_dim": self.embed_dim,
"num_heads": self.num_heads,
"dense_dim": self.dense_dim,
})
return config
def get_causal_attention_mask(self, inputs):
input_shape = tf.shape(inputs)
batch_size, sequence_length = input_shape[0], input_shape[1]
i = tf.range(sequence_length)[:, tf.newaxis]
j = tf.range(sequence_length)
mask = tf.cast(i >= j, dtype="int32")
mask = tf.reshape(mask, (1, input_shape[1], input_shape[1]))
mult = tf.concat(
[tf.expand_dims(batch_size, -1),
tf.constant([1, 1], dtype=tf.int32)], axis=0)
return tf.tile(mask, mult)
def call(self, inputs, encoder_outputs, mask=None):
causal_mask = self.get_causal_attention_mask(inputs)
if mask is not None:
padding_mask = tf.cast(
mask[:, tf.newaxis, :], dtype="int32")
padding_mask = tf.minimum(padding_mask, causal_mask)
else:
padding_mask = mask
attention_output_1 = self.attention_1(
query=inputs,
value=inputs,
key=inputs,
attention_mask=causal_mask)
attention_output_1 = self.layernorm_1(inputs + attention_output_1)
attention_output_2 = self.attention_2(
query=attention_output_1,
value=encoder_outputs,
key=encoder_outputs,
attention_mask=padding_mask,
)
attention_output_2 = self.layernorm_2(
attention_output_1 + attention_output_2)
proj_output = self.dense_proj(attention_output_2)
return self.layernorm_3(attention_output_2 + proj_output)
class PositionalEmbedding(layers.Layer):
def __init__(self, sequence_length, input_dim, output_dim, **kwargs):
super().__init__(**kwargs)
self.token_embeddings = layers.Embedding(
input_dim=input_dim, output_dim=output_dim)
self.position_embeddings = layers.Embedding(
input_dim=sequence_length, output_dim=output_dim)
self.sequence_length = sequence_length
self.input_dim = input_dim
self.output_dim = output_dim
def call(self, inputs):
length = tf.shape(inputs)[-1]
positions = tf.range(start=0, limit=length, delta=1)
embedded_tokens = self.token_embeddings(inputs)
embedded_positions = self.position_embeddings(positions)
return embedded_tokens + embedded_positions
def compute_mask(self, inputs, mask=None):
return tf.math.not_equal(inputs, 0)
def get_config(self):
config = super(PositionalEmbedding, self).get_config()
config.update({
"output_dim": self.output_dim,
"sequence_length": self.sequence_length,
"input_dim": self.input_dim,
})
return config
def decode_sequence_transf(input_sentence, src, tgt):
global translation_model
vocab_size = 15000
sequence_length = 30
source_vectorization = layers.TextVectorization(
max_tokens=vocab_size,
output_mode="int",
output_sequence_length=sequence_length,
standardize=custom_standardization,
vocabulary = load_vocab(dataPath+"/vocab_"+src+".txt"),
)
target_vectorization = layers.TextVectorization(
max_tokens=vocab_size,
output_mode="int",
output_sequence_length=sequence_length + 1,
standardize=custom_standardization,
vocabulary = load_vocab(dataPath+"/vocab_"+tgt+".txt"),
)
tgt_vocab = target_vectorization.get_vocabulary()
tgt_index_lookup = dict(zip(range(len(tgt_vocab)), tgt_vocab))
max_decoded_sentence_length = 50
tokenized_input_sentence = source_vectorization([input_sentence])
decoded_sentence = "[start]"
for i in range(max_decoded_sentence_length):
tokenized_target_sentence = target_vectorization(
[decoded_sentence])[:, :-1]
predictions = translation_model(
[tokenized_input_sentence, tokenized_target_sentence])
sampled_token_index = np.argmax(predictions[0, i, :])
sampled_token = tgt_index_lookup[sampled_token_index]
decoded_sentence += " " + sampled_token
if sampled_token == "[end]":
break
return decoded_sentence[8:-6]
# ==== End Transforformer section ====
def load_rnn():
merge = Merge( dataPath+"/rnn_en-fr_split", dataPath, "seq2seq_rnn-model-en-fr.h5").merge(cleanup=False)
merge = Merge( dataPath+"/rnn_fr-en_split", dataPath, "seq2seq_rnn-model-fr-en.h5").merge(cleanup=False)
rnn_en_fr = keras.models.load_model(dataPath+"/seq2seq_rnn-model-en-fr.h5") # , compile=False)
rnn_fr_en = keras.models.load_model(dataPath+"/seq2seq_rnn-model-fr-en.h5") # , compile=False)
rnn_en_fr.compile(optimizer="rmsprop", loss="sparse_categorical_crossentropy", metrics=["accuracy"])
rnn_fr_en.compile(optimizer="rmsprop", loss="sparse_categorical_crossentropy", metrics=["accuracy"])
return rnn_en_fr, rnn_fr_en
def load_transformer():
custom_objects = {"TransformerDecoder": TransformerDecoder, "PositionalEmbedding": PositionalEmbedding}
with keras.saving.custom_object_scope(custom_objects):
transformer_en_fr = keras.models.load_model( "data/transformer-model-en-fr.h5")
transformer_fr_en = keras.models.load_model( "data/transformer-model-fr-en.h5")
merge = Merge( "data/transf_en-fr_weight_split", "data", "transformer-model-en-fr.weights.h5").merge(cleanup=False)
merge = Merge( "data/transf_fr-en_weight_split", "data", "transformer-model-fr-en.weights.h5").merge(cleanup=False)
transformer_en_fr.compile(optimizer="rmsprop", loss="sparse_categorical_crossentropy", metrics=["accuracy"])
transformer_fr_en.compile(optimizer="rmsprop", loss="sparse_categorical_crossentropy", metrics=["accuracy"])
return transformer_en_fr, transformer_fr_en
rnn_en_fr, rnn_fr_en = load_rnn()
transformer_en_fr, transformer_fr_en = load_transformer()
# ==== Language identifier ====
def encode_text(textes):
global tokenizer
max_length=250
sequences = tokenizer.encode_batch(textes)
return pad_sequences(sequences, maxlen=max_length, padding='post')
def read_list_lan():
with open(dataPath+'/multilingue/lan_code.csv', 'r') as fichier_csv:
reader = csv.reader(fichier_csv)
lan_code = next(reader)
return lan_code
def init_dl_identifier():
global tokenizer, dl_model, label_encoder, lan_to_language, lan_identified
tokenizer = tiktoken.get_encoding("cl100k_base")
# Lisez le contenu du fichier JSON
with open(dataPath+'/multilingue/lan_to_language.json', 'r') as fichier:
lan_to_language = json.load(fichier)
label_encoder = LabelEncoder()
list_lan = read_list_lan()
lan_identified = [lan_to_language[l] for l in list_lan]
label_encoder.fit(list_lan)
merge = Merge(dataPath+"/dl_id_lang_split", dataPath, "dl_tiktoken_id_language_model.h5").merge(cleanup=False)
dl_model = keras.models.load_model(dataPath+"/dl_tiktoken_id_language_model.h5") #, compile=False)
return
def lang_id_dl(sentences):
global dl_model, label_encoder, lan_to_language
if 'dl_model' not in globals():
init_dl_identifier()
predictions = dl_model.predict(encode_text(sentences))
# Décodage des prédictions en langues
predicted_labels_encoded = np.argmax(predictions, axis=1)
predicted_languages = label_encoder.classes_[predicted_labels_encoded]
if (len(sentences)==1): return lan_to_language[predicted_languages[0]]
else: return [l for l in predicted_languages]
# ==== Endpoints ====
@api.get('/', name="Vérification que l'API fonctionne")
def check_api():
load_rnn()
load_transformer()
init_dl_identifier()
return {'message': "L'API fonctionne"}
@api.get('/small_vocab/rnn', name="Traduction par RNN")
async def trad_rnn(lang_tgt:str,
texte: str):
global translation_model
if 'translation_model' not in globals():
load_rnn()
load_transformer()
if (lang_tgt=='en'):
translation_model = rnn_fr_en
return decode_sequence_rnn(texte, "fr", "en")
else:
translation_model = rnn_en_fr
return decode_sequence_rnn(texte, "en", "fr")
@api.get('/small_vocab/transformer', name="Traduction par Transformer")
async def trad_transformer(lang_tgt:str,
texte: str):
global translation_model
if 'translation_model' not in globals():
load_rnn()
load_transformer()
if (lang_tgt=='en'):
translation_model = transformer_fr_en
return decode_sequence_transf(texte, "fr", "en")
else:
translation_model = transformer_en_fr
return decode_sequence_transf(texte, "en", "fr")
@api.get('/small_vocab/plot_model', name="Affiche le modèle")
def affiche_modele(model_type: str,
lang_tgt:Optional[str]=None):
global translation_model, dl_model
if model_type=="lang_id":
model_to_display = dl_model
elif (model_type=="rnn"):
if (lang_tgt=='en'):
model_to_display = rnn_fr_en
else:
model_to_display = rnn_en_fr
else:
if (lang_tgt=='en'):
model_to_display = transformer_fr_en
else:
model_to_display = transformer_en_fr
plot_model(model_to_display, show_shapes=True, show_layer_names=True, show_layer_activations=True,rankdir='TB',to_file=imagePath+'/model_plot.png')
with open(imagePath+'/model_plot.png', "rb") as image_file:
# Lire les données de l'image
image_data = image_file.read()
# Retourner l'image en tant que réponse HTTP avec le type de contenu approprié
return Response(content=image_data, media_type="image/png")
@api.get('/lang_id_dl', name="Id de langue par DL")
async def language_id_dl(sentence:List[str] = Query(..., min_length=1)):
return lang_id_dl(sentence)
@api.get('/lan_identified', name="Langues identifiées par les modèles")
def languages_identified():
global lan_identified
if 'lan_identified' not in globals():
init_dl_identifier()
return lan_identified
|