File size: 14,116 Bytes
cb4b492
40a3d50
 
 
2eb8138
40a3d50
 
 
 
 
 
 
 
 
cb4b492
 
17f4cff
cb4b492
40a3d50
 
 
cb4b492
40a3d50
 
dcf791a
 
ad799ea
40a3d50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0804813
40a3d50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0804813
40a3d50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b65ad0
40a3d50
 
 
19d2b13
40a3d50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3951193
40a3d50
 
 
6b65ad0
dcf791a
40a3d50
 
1157ef0
 
40a3d50
 
6b65ad0
 
 
40a3d50
dcf791a
 
 
 
 
40a3d50
 
 
6b65ad0
40a3d50
6b65ad0
 
e5c5c99
cb4b492
2b50631
cb4b492
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51e43d8
cb4b492
 
 
 
 
 
 
 
 
 
1157ef0
cb4b492
5e30142
cb4b492
 
 
daea820
6b65ad0
1036c97
cb4b492
 
 
1036c97
cb4b492
2b50631
cb4b492
40a3d50
dcf791a
 
6b65ad0
 
17f4cff
dcf791a
40a3d50
dcf791a
dea6b5e
dcf791a
172ea8a
dcf791a
daea820
 
 
 
dcf791a
d5bb204
b11246e
dcf791a
d5bb204
b11246e
dcf791a
 
4689693
dcf791a
172ea8a
dcf791a
daea820
 
 
 
dcf791a
ad799ea
6b65ad0
dcf791a
ad799ea
6b65ad0
dcf791a
ad799ea
5e30142
 
e9caa0f
ad799ea
e9caa0f
 
 
 
 
ad799ea
e9caa0f
ad799ea
e9caa0f
 
ad799ea
e9caa0f
 
d67826b
 
 
 
 
 
e9491b8
351b68b
6b65ad0
ce16949
1469d3f
 
3a31df1
1469d3f
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
from fastapi import FastAPI, HTTPException, Header, Depends, Request, Response, Query
from fastapi.responses import JSONResponse
from fastapi.security import HTTPBasic, HTTPBasicCredentials
from fastapi.exceptions import RequestValidationError
import asyncio
from typing import Optional, List
from pydantic import BaseModel, ValidationError
import pandas as pd
import numpy as np
import os
from filesplit.merge import Merge
import tensorflow as tf
import string
import re
import json
import csv
import tiktoken
from sklearn.preprocessing import LabelEncoder
from tensorflow import keras
from keras_nlp.layers import TransformerEncoder
from tensorflow.keras import layers
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.utils import plot_model

api = FastAPI()
dataPath = "data"
imagePath = "images"

# ===== Keras ====
strip_chars = string.punctuation + "¿"
strip_chars = strip_chars.replace("[", "")
strip_chars = strip_chars.replace("]", "")

def custom_standardization(input_string):
    lowercase = tf.strings.lower(input_string)
    lowercase=tf.strings.regex_replace(lowercase, "[à]", "a")
    return tf.strings.regex_replace(
        lowercase, f"[{re.escape(strip_chars)}]", "")

def load_vocab(file_path):
    with open(file_path, "r",  encoding="utf-8") as file:
        return file.read().split('\n')[:-1]


def decode_sequence_rnn(input_sentence, src, tgt):
    global translation_model

    vocab_size = 15000
    sequence_length = 50

    source_vectorization = layers.TextVectorization(
        max_tokens=vocab_size,
        output_mode="int",
        output_sequence_length=sequence_length,
        standardize=custom_standardization,
        vocabulary = load_vocab(dataPath+"/vocab_"+src+".txt"),
    )

    target_vectorization = layers.TextVectorization(
        max_tokens=vocab_size,
        output_mode="int",
        output_sequence_length=sequence_length + 1,
        standardize=custom_standardization,
        vocabulary = load_vocab(dataPath+"/vocab_"+tgt+".txt"),
    )

    tgt_vocab = target_vectorization.get_vocabulary()
    tgt_index_lookup = dict(zip(range(len(tgt_vocab)), tgt_vocab))
    max_decoded_sentence_length = 50
    tokenized_input_sentence = source_vectorization([input_sentence])
    decoded_sentence = "[start]"
    for i in range(max_decoded_sentence_length):
        tokenized_target_sentence = target_vectorization([decoded_sentence])
        next_token_predictions = translation_model.predict(
            [tokenized_input_sentence, tokenized_target_sentence], verbose=0)
        sampled_token_index = np.argmax(next_token_predictions[0, i, :])
        sampled_token = tgt_index_lookup[sampled_token_index]
        decoded_sentence += " " + sampled_token
        if sampled_token == "[end]":
            break
    return decoded_sentence[8:-6]

# ===== Enf of Keras ====

# ===== Transformer section ====

class TransformerDecoder(layers.Layer):
    def __init__(self, embed_dim, dense_dim, num_heads, **kwargs):
        super().__init__(**kwargs)
        self.embed_dim = embed_dim
        self.dense_dim = dense_dim
        self.num_heads = num_heads
        self.attention_1 = layers.MultiHeadAttention(
            num_heads=num_heads, key_dim=embed_dim)
        self.attention_2 = layers.MultiHeadAttention(
            num_heads=num_heads, key_dim=embed_dim)
        self.dense_proj = keras.Sequential(
            [layers.Dense(dense_dim, activation="relu"),
             layers.Dense(embed_dim),]
        )
        self.layernorm_1 = layers.LayerNormalization()
        self.layernorm_2 = layers.LayerNormalization()
        self.layernorm_3 = layers.LayerNormalization()
        self.supports_masking = True

    def get_config(self):
        config = super().get_config()
        config.update({
            "embed_dim": self.embed_dim,
            "num_heads": self.num_heads,
            "dense_dim": self.dense_dim,
        })
        return config

    def get_causal_attention_mask(self, inputs):
        input_shape = tf.shape(inputs)
        batch_size, sequence_length = input_shape[0], input_shape[1]
        i = tf.range(sequence_length)[:, tf.newaxis]
        j = tf.range(sequence_length)
        mask = tf.cast(i >= j, dtype="int32")
        mask = tf.reshape(mask, (1, input_shape[1], input_shape[1]))
        mult = tf.concat(
            [tf.expand_dims(batch_size, -1),
             tf.constant([1, 1], dtype=tf.int32)], axis=0)
        return tf.tile(mask, mult)

    def call(self, inputs, encoder_outputs, mask=None):
        causal_mask = self.get_causal_attention_mask(inputs)
        if mask is not None:
            padding_mask = tf.cast(
                mask[:, tf.newaxis, :], dtype="int32")
            padding_mask = tf.minimum(padding_mask, causal_mask)
        else:
            padding_mask = mask
        attention_output_1 = self.attention_1(
            query=inputs,
            value=inputs,
            key=inputs,
            attention_mask=causal_mask)
        attention_output_1 = self.layernorm_1(inputs + attention_output_1)
        attention_output_2 = self.attention_2(
            query=attention_output_1,
            value=encoder_outputs,
            key=encoder_outputs,
            attention_mask=padding_mask,
        )
        attention_output_2 = self.layernorm_2(
            attention_output_1 + attention_output_2)
        proj_output = self.dense_proj(attention_output_2)
        return self.layernorm_3(attention_output_2 + proj_output)
    
class PositionalEmbedding(layers.Layer):
    def __init__(self, sequence_length, input_dim, output_dim, **kwargs):
        super().__init__(**kwargs)
        self.token_embeddings = layers.Embedding(
            input_dim=input_dim, output_dim=output_dim)
        self.position_embeddings = layers.Embedding(
            input_dim=sequence_length, output_dim=output_dim)
        self.sequence_length = sequence_length
        self.input_dim = input_dim
        self.output_dim = output_dim

    def call(self, inputs):
        length = tf.shape(inputs)[-1]
        positions = tf.range(start=0, limit=length, delta=1)
        embedded_tokens = self.token_embeddings(inputs)
        embedded_positions = self.position_embeddings(positions)
        return embedded_tokens + embedded_positions

    def compute_mask(self, inputs, mask=None):
        return tf.math.not_equal(inputs, 0)

    def get_config(self):
        config = super(PositionalEmbedding, self).get_config()
        config.update({
            "output_dim": self.output_dim,
            "sequence_length": self.sequence_length,
            "input_dim": self.input_dim,
        })
        return config
    
def decode_sequence_transf(input_sentence, src, tgt):
    global translation_model

    vocab_size = 15000
    sequence_length = 30

    source_vectorization = layers.TextVectorization(
        max_tokens=vocab_size,
        output_mode="int",
        output_sequence_length=sequence_length,
        standardize=custom_standardization,
        vocabulary = load_vocab(dataPath+"/vocab_"+src+".txt"),
    )

    target_vectorization = layers.TextVectorization(
        max_tokens=vocab_size,
        output_mode="int",
        output_sequence_length=sequence_length + 1,
        standardize=custom_standardization,
        vocabulary = load_vocab(dataPath+"/vocab_"+tgt+".txt"),
    )

    tgt_vocab = target_vectorization.get_vocabulary()
    tgt_index_lookup = dict(zip(range(len(tgt_vocab)), tgt_vocab))
    max_decoded_sentence_length = 50
    tokenized_input_sentence = source_vectorization([input_sentence])
    decoded_sentence = "[start]"
    for i in range(max_decoded_sentence_length):
        tokenized_target_sentence = target_vectorization(
            [decoded_sentence])[:, :-1]
        predictions = translation_model(
            [tokenized_input_sentence, tokenized_target_sentence])
        sampled_token_index = np.argmax(predictions[0, i, :])
        sampled_token = tgt_index_lookup[sampled_token_index]
        decoded_sentence += " " + sampled_token
        if sampled_token == "[end]":
            break
    return decoded_sentence[8:-6]

# ==== End Transforformer section ====

def load_rnn():
   
    merge = Merge( dataPath+"/rnn_en-fr_split",  dataPath, "seq2seq_rnn-model-en-fr.h5").merge(cleanup=False)
    merge = Merge( dataPath+"/rnn_fr-en_split",  dataPath, "seq2seq_rnn-model-fr-en.h5").merge(cleanup=False)
    rnn_en_fr = keras.models.load_model(dataPath+"/seq2seq_rnn-model-en-fr.h5") # , compile=False)
    rnn_fr_en = keras.models.load_model(dataPath+"/seq2seq_rnn-model-fr-en.h5") # , compile=False)
    rnn_en_fr.compile(optimizer="rmsprop", loss="sparse_categorical_crossentropy", metrics=["accuracy"])
    rnn_fr_en.compile(optimizer="rmsprop", loss="sparse_categorical_crossentropy", metrics=["accuracy"])
    return rnn_en_fr, rnn_fr_en

def load_transformer():
    custom_objects = {"TransformerDecoder": TransformerDecoder, "PositionalEmbedding": PositionalEmbedding}
    with keras.saving.custom_object_scope(custom_objects):
        transformer_en_fr = keras.models.load_model( "data/transformer-model-en-fr.h5")
        transformer_fr_en = keras.models.load_model( "data/transformer-model-fr-en.h5")
    merge = Merge( "data/transf_en-fr_weight_split",  "data", "transformer-model-en-fr.weights.h5").merge(cleanup=False)
    merge = Merge( "data/transf_fr-en_weight_split",  "data", "transformer-model-fr-en.weights.h5").merge(cleanup=False)
    transformer_en_fr.compile(optimizer="rmsprop", loss="sparse_categorical_crossentropy", metrics=["accuracy"])
    transformer_fr_en.compile(optimizer="rmsprop", loss="sparse_categorical_crossentropy", metrics=["accuracy"])

    return transformer_en_fr, transformer_fr_en

rnn_en_fr, rnn_fr_en = load_rnn() 
transformer_en_fr, transformer_fr_en = load_transformer()
      
#  ==== Language identifier ====

def encode_text(textes):
    global tokenizer

    max_length=250
    sequences = tokenizer.encode_batch(textes)
    return pad_sequences(sequences, maxlen=max_length, padding='post')

def read_list_lan():

    with open(dataPath+'/multilingue/lan_code.csv', 'r') as fichier_csv:
        reader = csv.reader(fichier_csv)
        lan_code = next(reader)
        return lan_code

def init_dl_identifier():
    global tokenizer, dl_model, label_encoder, lan_to_language, lan_identified
    
    tokenizer = tiktoken.get_encoding("cl100k_base")
    # Lisez le contenu du fichier JSON
    with open(dataPath+'/multilingue/lan_to_language.json', 'r') as fichier:
        lan_to_language = json.load(fichier)
    label_encoder = LabelEncoder()
    list_lan = read_list_lan()
    lan_identified = [lan_to_language[l] for l in list_lan]
    label_encoder.fit(list_lan)
    merge = Merge(dataPath+"/dl_id_lang_split",  dataPath, "dl_tiktoken_id_language_model.h5").merge(cleanup=False)
    dl_model = keras.models.load_model(dataPath+"/dl_tiktoken_id_language_model.h5") #, compile=False)
    return

def lang_id_dl(sentences):
    global dl_model, label_encoder, lan_to_language
    
    if 'dl_model' not in globals():
        init_dl_identifier()
    predictions = dl_model.predict(encode_text(sentences))
    # Décodage des prédictions en langues
    predicted_labels_encoded = np.argmax(predictions, axis=1)
    predicted_languages = label_encoder.classes_[predicted_labels_encoded]
    if (len(sentences)==1): return lan_to_language[predicted_languages[0]]
    else: return [l for l in predicted_languages]

#  ==== Endpoints ====

@api.get('/', name="Vérification que l'API fonctionne")
def check_api():
    load_rnn()
    load_transformer()
    init_dl_identifier()
    return {'message': "L'API fonctionne"}

@api.get('/small_vocab/rnn', name="Traduction par RNN")
async def trad_rnn(lang_tgt:str,
              texte: str):
    global translation_model
    
    if 'translation_model' not in globals():
        load_rnn()
        load_transformer()
        
    if (lang_tgt=='en'):
        translation_model = rnn_fr_en
        return decode_sequence_rnn(texte, "fr", "en")
    else:
        translation_model = rnn_en_fr
        return decode_sequence_rnn(texte, "en", "fr")
    
@api.get('/small_vocab/transformer', name="Traduction par Transformer")
async def trad_transformer(lang_tgt:str,
              texte: str):
    global translation_model
    
    if 'translation_model' not in globals():
        load_rnn()
        load_transformer()
        
    if (lang_tgt=='en'):
        translation_model = transformer_fr_en
        return decode_sequence_transf(texte, "fr", "en")
    else:
        translation_model = transformer_en_fr
        return decode_sequence_transf(texte, "en", "fr")

@api.get('/small_vocab/plot_model', name="Affiche le modèle")
def affiche_modele(model_type: str,
                   lang_tgt:Optional[str]=None):
    global translation_model, dl_model
    
    if model_type=="lang_id":
        model_to_display = dl_model
    elif (model_type=="rnn"):
        if (lang_tgt=='en'):
            model_to_display = rnn_fr_en
        else:
            model_to_display = rnn_en_fr
    else:
        if (lang_tgt=='en'):
            model_to_display = transformer_fr_en
        else:
            model_to_display = transformer_en_fr
    plot_model(model_to_display, show_shapes=True, show_layer_names=True, show_layer_activations=True,rankdir='TB',to_file=imagePath+'/model_plot.png')
    with open(imagePath+'/model_plot.png', "rb") as image_file:
            # Lire les données de l'image
            image_data = image_file.read()
            
            # Retourner l'image en tant que réponse HTTP avec le type de contenu approprié
            return Response(content=image_data, media_type="image/png")

@api.get('/lang_id_dl', name="Id de langue par DL")
async def language_id_dl(sentence:List[str] = Query(..., min_length=1)):
    return lang_id_dl(sentence)

@api.get('/lan_identified', name="Langues identifiées par les modèles")
def languages_identified():
    global lan_identified
    
    if 'lan_identified' not in globals():
        init_dl_identifier()
    return lan_identified