from fastapi import FastAPI, HTTPException, Header, Depends, Request from fastapi.responses import JSONResponse from fastapi.security import HTTPBasic, HTTPBasicCredentials from fastapi.exceptions import RequestValidationError from typing import Optional, List from pydantic import BaseModel, ValidationError import pandas as pd import numpy as np import os from transformers import pipeline from filesplit.merge import Merge import tensorflow as tf import string import re from tensorflow import keras from keras_nlp.layers import TransformerEncoder from tensorflow.keras import layers from tensorflow.keras.utils import plot_model api = FastAPI() dataPath = "data" # ===== Keras ==== strip_chars = string.punctuation + "¿" strip_chars = strip_chars.replace("[", "") strip_chars = strip_chars.replace("]", "") def custom_standardization(input_string): lowercase = tf.strings.lower(input_string) lowercase=tf.strings.regex_replace(lowercase, "[à]", "a") return tf.strings.regex_replace( lowercase, f"[{re.escape(strip_chars)}]", "") @st.cache_data def load_vocab(file_path): with open(file_path, "r", encoding="utf-8") as file: return file.read().split('\n')[:-1] def decode_sequence_rnn(input_sentence, src, tgt): global translation_model vocab_size = 15000 sequence_length = 50 source_vectorization = layers.TextVectorization( max_tokens=vocab_size, output_mode="int", output_sequence_length=sequence_length, standardize=custom_standardization, vocabulary = load_vocab(dataPath+"/vocab_"+src+".txt"), ) target_vectorization = layers.TextVectorization( max_tokens=vocab_size, output_mode="int", output_sequence_length=sequence_length + 1, standardize=custom_standardization, vocabulary = load_vocab(dataPath+"/vocab_"+tgt+".txt"), ) tgt_vocab = target_vectorization.get_vocabulary() tgt_index_lookup = dict(zip(range(len(tgt_vocab)), tgt_vocab)) max_decoded_sentence_length = 50 tokenized_input_sentence = source_vectorization([input_sentence]) decoded_sentence = "[start]" for i in range(max_decoded_sentence_length): tokenized_target_sentence = target_vectorization([decoded_sentence]) next_token_predictions = translation_model.predict( [tokenized_input_sentence, tokenized_target_sentence], verbose=0) sampled_token_index = np.argmax(next_token_predictions[0, i, :]) sampled_token = tgt_index_lookup[sampled_token_index] decoded_sentence += " " + sampled_token if sampled_token == "[end]": break return decoded_sentence[8:-6] # ===== Enf of Keras ==== # ===== Transformer section ==== class TransformerDecoder(layers.Layer): def __init__(self, embed_dim, dense_dim, num_heads, **kwargs): super().__init__(**kwargs) self.embed_dim = embed_dim self.dense_dim = dense_dim self.num_heads = num_heads self.attention_1 = layers.MultiHeadAttention( num_heads=num_heads, key_dim=embed_dim) self.attention_2 = layers.MultiHeadAttention( num_heads=num_heads, key_dim=embed_dim) self.dense_proj = keras.Sequential( [layers.Dense(dense_dim, activation="relu"), layers.Dense(embed_dim),] ) self.layernorm_1 = layers.LayerNormalization() self.layernorm_2 = layers.LayerNormalization() self.layernorm_3 = layers.LayerNormalization() self.supports_masking = True def get_config(self): config = super().get_config() config.update({ "embed_dim": self.embed_dim, "num_heads": self.num_heads, "dense_dim": self.dense_dim, }) return config def get_causal_attention_mask(self, inputs): input_shape = tf.shape(inputs) batch_size, sequence_length = input_shape[0], input_shape[1] i = tf.range(sequence_length)[:, tf.newaxis] j = tf.range(sequence_length) mask = tf.cast(i >= j, dtype="int32") mask = tf.reshape(mask, (1, input_shape[1], input_shape[1])) mult = tf.concat( [tf.expand_dims(batch_size, -1), tf.constant([1, 1], dtype=tf.int32)], axis=0) return tf.tile(mask, mult) def call(self, inputs, encoder_outputs, mask=None): causal_mask = self.get_causal_attention_mask(inputs) if mask is not None: padding_mask = tf.cast( mask[:, tf.newaxis, :], dtype="int32") padding_mask = tf.minimum(padding_mask, causal_mask) else: padding_mask = mask attention_output_1 = self.attention_1( query=inputs, value=inputs, key=inputs, attention_mask=causal_mask) attention_output_1 = self.layernorm_1(inputs + attention_output_1) attention_output_2 = self.attention_2( query=attention_output_1, value=encoder_outputs, key=encoder_outputs, attention_mask=padding_mask, ) attention_output_2 = self.layernorm_2( attention_output_1 + attention_output_2) proj_output = self.dense_proj(attention_output_2) return self.layernorm_3(attention_output_2 + proj_output) class PositionalEmbedding(layers.Layer): def __init__(self, sequence_length, input_dim, output_dim, **kwargs): super().__init__(**kwargs) self.token_embeddings = layers.Embedding( input_dim=input_dim, output_dim=output_dim) self.position_embeddings = layers.Embedding( input_dim=sequence_length, output_dim=output_dim) self.sequence_length = sequence_length self.input_dim = input_dim self.output_dim = output_dim def call(self, inputs): length = tf.shape(inputs)[-1] positions = tf.range(start=0, limit=length, delta=1) embedded_tokens = self.token_embeddings(inputs) embedded_positions = self.position_embeddings(positions) return embedded_tokens + embedded_positions def compute_mask(self, inputs, mask=None): return tf.math.not_equal(inputs, 0) def get_config(self): config = super(PositionalEmbedding, self).get_config() config.update({ "output_dim": self.output_dim, "sequence_length": self.sequence_length, "input_dim": self.input_dim, }) return config def decode_sequence_tranf(input_sentence, src, tgt): global translation_model vocab_size = 15000 sequence_length = 30 source_vectorization = layers.TextVectorization( max_tokens=vocab_size, output_mode="int", output_sequence_length=sequence_length, standardize=custom_standardization, vocabulary = load_vocab(dataPath+"/vocab_"+src+".txt"), ) target_vectorization = layers.TextVectorization( max_tokens=vocab_size, output_mode="int", output_sequence_length=sequence_length + 1, standardize=custom_standardization, vocabulary = load_vocab(dataPath+"/vocab_"+tgt+".txt"), ) tgt_vocab = target_vectorization.get_vocabulary() tgt_index_lookup = dict(zip(range(len(tgt_vocab)), tgt_vocab)) max_decoded_sentence_length = 50 tokenized_input_sentence = source_vectorization([input_sentence]) decoded_sentence = "[start]" for i in range(max_decoded_sentence_length): tokenized_target_sentence = target_vectorization( [decoded_sentence])[:, :-1] predictions = translation_model( [tokenized_input_sentence, tokenized_target_sentence]) sampled_token_index = np.argmax(predictions[0, i, :]) sampled_token = tgt_index_lookup[sampled_token_index] decoded_sentence += " " + sampled_token if sampled_token == "[end]": break return decoded_sentence[8:-6] # ==== End Transforformer section ==== def load_all_data(): merge = Merge( dataPath+"/rnn_en-fr_split", dataPath, "seq2seq_rnn-model-en-fr.h5").merge(cleanup=False) merge = Merge( dataPath+"/rnn_fr-en_split", dataPath, "seq2seq_rnn-model-fr-en.h5").merge(cleanup=False) rnn_en_fr = keras.models.load_model(dataPath+"/seq2seq_rnn-model-en-fr.h5", compile=False) rnn_fr_en = keras.models.load_model(dataPath+"/seq2seq_rnn-model-fr-en.h5", compile=False) rnn_en_fr.compile(optimizer="rmsprop", loss="sparse_categorical_crossentropy", metrics=["accuracy"]) rnn_fr_en.compile(optimizer="rmsprop", loss="sparse_categorical_crossentropy", metrics=["accuracy"]) custom_objects = {"TransformerDecoder": TransformerDecoder, "PositionalEmbedding": PositionalEmbedding} with keras.saving.custom_object_scope(custom_objects): transformer_en_fr = keras.models.load_model( "data/transformer-model-en-fr.h5") transformer_fr_en = keras.models.load_model( "data/transformer-model-fr-en.h5") merge = Merge( "data/transf_en-fr_weight_split", "data", "transformer-model-en-fr.weights.h5").merge(cleanup=False) merge = Merge( "data/transf_fr-en_weight_split", "data", "transformer-model-fr-en.weights.h5").merge(cleanup=False) transformer_en_fr.compile(optimizer="rmsprop", loss="sparse_categorical_crossentropy", metrics=["accuracy"]) transformer_fr_en.compile(optimizer="rmsprop", loss="sparse_categorical_crossentropy", metrics=["accuracy"]) return translation_en_fr, translation_fr_en, rnn_en_fr, rnn_fr_en, transformer_en_fr, transformer_fr_en n1 = 0 translation_en_fr, translation_fr_en, rnn_en_fr, rnn_fr_en, transformer_en_fr, transformer_fr_en = load_all_data() def display_translation(n1, Lang,model_type): global df_data_src, df_data_tgt, placeholder placeholder = st.empty() with st.status(":sunglasses:", expanded=True): s = df_data_src.iloc[n1:n1+5][0].tolist() s_trad = [] s_trad_ref = df_data_tgt.iloc[n1:n1+5][0].tolist() source = Lang[:2] target = Lang[-2:] for i in range(3): if model_type==1: s_trad.append(decode_sequence_rnn(s[i], source, target)) else: s_trad.append(decode_sequence_tranf(s[i], source, target)) st.write("**"+source+" :** :blue["+ s[i]+"]") st.write("**"+target+" :** "+s_trad[-1]) st.write("**ref. :** "+s_trad_ref[i]) st.write("") with placeholder: st.write("
Score Bleu = "+str(int(round(corpus_bleu(s_trad,[s_trad_ref]).score,0)))+"%
", \ unsafe_allow_html=True) def find_lang_label(lang_sel): global lang_tgt, label_lang return label_lang[lang_tgt.index(lang_sel)] @api.get('/', name="Vérification que l'API fonctionne") def check_api(): load_all_data() return {'message': "L'API fonctionne"} @api.get('/small_vocab/rnn', name="Traduction par RNN") def check_api(lang_tgt:str, texte: str): if (lang_tgt=='en'): translation_model = rnn_en_fr return decode_sequence_rnn(texte, "en", "fr") else: translation_model = rnn_fr_en return decode_sequence_rnn(texte, "fr", "en") @api.get('/small_vocab/transformer', name="Traduction par Transformer") def check_api(lang_tgt:str, texte: str): if (lang_tgt=='en'): translation_model = rnn_en_fr return decode_sequence_tranf(texte, "en", "fr") else: translation_model = rnn_fr_en return decode_sequence_tranf(texte, "fr", "en") ''' def run(): global n1, df_data_src, df_data_tgt, translation_model, placeholder, model_speech global df_data_en, df_data_fr, lang_classifier, translation_en_fr, translation_fr_en global lang_tgt, label_lang st.write("") st.title(tr(title)) # st.write("## **"+tr("Explications")+" :**\n") st.markdown(tr( """ Enfin, nous avons réalisé une traduction :red[**Seq2Seq**] ("Sequence-to-Sequence") avec des :red[**réseaux neuronaux**]. """) , unsafe_allow_html=True) st.markdown(tr( """ La traduction Seq2Seq est une méthode d'apprentissage automatique qui permet de traduire des séquences de texte d'une langue à une autre en utilisant un :red[**encodeur**] pour capturer le sens du texte source, un :red[**décodeur**] pour générer la traduction, avec un ou plusieurs :red[**vecteurs d'intégration**] qui relient les deux, afin de transmettre le contexte, l'attention ou la position. """) , unsafe_allow_html=True) st.image("assets/deepnlp_graph1.png",use_column_width=True) st.markdown(tr( """ Nous avons mis en oeuvre ces techniques avec des Réseaux Neuronaux Récurrents (GRU en particulier) et des Transformers Vous en trouverez :red[**5 illustrations**] ci-dessous. """) , unsafe_allow_html=True) # Utilisation du module translate lang_tgt = ['en','fr','af','ak','sq','de','am','en','ar','hy','as','az','ba','bm','eu','bn','be','my','bs','bg','ks','ca','ny','zh','si','ko','co','ht','hr','da','dz','gd','es','eo','et','ee','fo','fj','fi','fr','fy','gl','cy','lg','ka','el','gn','gu','ha','he','hi','hu','ig','id','iu','ga','is','it','ja','kn','kk','km','ki','rw','ky','rn','ku','lo','la','lv','li','ln','lt','lb','mk','ms','ml','dv','mg','mt','mi','mr','mn','nl','ne','no','nb','nn','oc','or','ug','ur','uz','ps','pa','fa','pl','pt','ro','ru','sm','sg','sa','sc','sr','sn','sd','sk','sl','so','st','su','sv','sw','ss','tg','tl','ty','ta','tt','cs','te','th','bo','ti','to','ts','tn','tr','tk','tw','uk','vi','wo','xh','yi'] label_lang = ['Anglais','Français','Afrikaans','Akan','Albanais','Allemand','Amharique','Anglais','Arabe','Arménien','Assamais','Azéri','Bachkir','Bambara','Basque','Bengali','Biélorusse','Birman','Bosnien','Bulgare','Cachemiri','Catalan','Chichewa','Chinois','Cingalais','Coréen','Corse','Créolehaïtien','Croate','Danois','Dzongkha','Écossais','Espagnol','Espéranto','Estonien','Ewe','Féroïen','Fidjien','Finnois','Français','Frisonoccidental','Galicien','Gallois','Ganda','Géorgien','Grecmoderne','Guarani','Gujarati','Haoussa','Hébreu','Hindi','Hongrois','Igbo','Indonésien','Inuktitut','Irlandais','Islandais','Italien','Japonais','Kannada','Kazakh','Khmer','Kikuyu','Kinyarwanda','Kirghiz','Kirundi','Kurde','Lao','Latin','Letton','Limbourgeois','Lingala','Lituanien','Luxembourgeois','Macédonien','Malais','Malayalam','Maldivien','Malgache','Maltais','MaorideNouvelle-Zélande','Marathi','Mongol','Néerlandais','Népalais','Norvégien','Norvégienbokmål','Norvégiennynorsk','Occitan','Oriya','Ouïghour','Ourdou','Ouzbek','Pachto','Pendjabi','Persan','Polonais','Portugais','Roumain','Russe','Samoan','Sango','Sanskrit','Sarde','Serbe','Shona','Sindhi','Slovaque','Slovène','Somali','SothoduSud','Soundanais','Suédois','Swahili','Swati','Tadjik','Tagalog','Tahitien','Tamoul','Tatar','Tchèque','Télougou','Thaï','Tibétain','Tigrigna','Tongien','Tsonga','Tswana','Turc','Turkmène','Twi','Ukrainien','Vietnamien','Wolof','Xhosa','Yiddish'] lang_src = {'ar': 'arabic', 'bg': 'bulgarian', 'de': 'german', 'el':'modern greek', 'en': 'english', 'es': 'spanish', 'fr': 'french', \ 'hi': 'hindi', 'it': 'italian', 'ja': 'japanese', 'nl': 'dutch', 'pl': 'polish', 'pt': 'portuguese', 'ru': 'russian', 'sw': 'swahili', \ 'th': 'thai', 'tr': 'turkish', 'ur': 'urdu', 'vi': 'vietnamese', 'zh': 'chinese'} st.write("#### "+tr("Choisissez le type de traduction")+" :") chosen_id = tab_bar(data=[ TabBarItemData(id="tab1", title="small vocab", description=tr("avec Keras et un RNN")), TabBarItemData(id="tab2", title="small vocab", description=tr("avec Keras et un Transformer")), TabBarItemData(id="tab3", title=tr("Phrase personnelle"), description=tr("à écrire")), TabBarItemData(id="tab4", title=tr("Phrase personnelle"), description=tr("à dicter")), TabBarItemData(id="tab5", title=tr("Funny translation !"), description=tr("avec le Fine Tuning"))], default="tab1") if (chosen_id == "tab1") or (chosen_id == "tab2") : if (chosen_id == "tab1"): st.write("