import streamlit as st import pandas as pd import numpy as np import os from sacrebleu import corpus_bleu from transformers import pipeline from translate import Translator from audio_recorder_streamlit import audio_recorder import speech_recognition as sr import whisper import io # import wave import wavio from filesplit.merge import Merge import tensorflow as tf import string import re from tensorflow import keras from keras_nlp.layers import TransformerEncoder from tensorflow.keras import layers from tensorflow.keras.utils import plot_model from PIL import Image from gtts import gTTS from extra_streamlit_components import tab_bar, TabBarItemData from translate_app import tr title = "Traduction Sequence à Sequence" sidebar_name = "Traduction Seq2Seq" dataPath = st.session_state.DataPath @st.cache_data def load_corpus(path): input_file = os.path.join(path) with open(input_file, "r", encoding="utf-8") as f: data = f.read() data = data.split('\n') data=data[:-1] return pd.DataFrame(data) # ===== Keras ==== strip_chars = string.punctuation + "¿" strip_chars = strip_chars.replace("[", "") strip_chars = strip_chars.replace("]", "") def custom_standardization(input_string): lowercase = tf.strings.lower(input_string) lowercase=tf.strings.regex_replace(lowercase, "[à]", "a") return tf.strings.regex_replace( lowercase, f"[{re.escape(strip_chars)}]", "") @st.cache_data def load_vocab(file_path): with open(file_path, "r", encoding="utf-8") as file: return file.read().split('\n')[:-1] def decode_sequence_rnn(input_sentence, src, tgt): global translation_model vocab_size = 15000 sequence_length = 50 source_vectorization = layers.TextVectorization( max_tokens=vocab_size, output_mode="int", output_sequence_length=sequence_length, standardize=custom_standardization, vocabulary = load_vocab(dataPath+"/vocab_"+src+".txt"), ) target_vectorization = layers.TextVectorization( max_tokens=vocab_size, output_mode="int", output_sequence_length=sequence_length + 1, standardize=custom_standardization, vocabulary = load_vocab(dataPath+"/vocab_"+tgt+".txt"), ) tgt_vocab = target_vectorization.get_vocabulary() tgt_index_lookup = dict(zip(range(len(tgt_vocab)), tgt_vocab)) max_decoded_sentence_length = 50 tokenized_input_sentence = source_vectorization([input_sentence]) decoded_sentence = "[start]" for i in range(max_decoded_sentence_length): tokenized_target_sentence = target_vectorization([decoded_sentence]) next_token_predictions = translation_model.predict( [tokenized_input_sentence, tokenized_target_sentence], verbose=0) sampled_token_index = np.argmax(next_token_predictions[0, i, :]) sampled_token = tgt_index_lookup[sampled_token_index] decoded_sentence += " " + sampled_token if sampled_token == "[end]": break return decoded_sentence[8:-6] # ===== Enf of Keras ==== # ===== Transformer section ==== class TransformerDecoder(layers.Layer): def __init__(self, embed_dim, dense_dim, num_heads, **kwargs): super().__init__(**kwargs) self.embed_dim = embed_dim self.dense_dim = dense_dim self.num_heads = num_heads self.attention_1 = layers.MultiHeadAttention( num_heads=num_heads, key_dim=embed_dim) self.attention_2 = layers.MultiHeadAttention( num_heads=num_heads, key_dim=embed_dim) self.dense_proj = keras.Sequential( [layers.Dense(dense_dim, activation="relu"), layers.Dense(embed_dim),] ) self.layernorm_1 = layers.LayerNormalization() self.layernorm_2 = layers.LayerNormalization() self.layernorm_3 = layers.LayerNormalization() self.supports_masking = True def get_config(self): config = super().get_config() config.update({ "embed_dim": self.embed_dim, "num_heads": self.num_heads, "dense_dim": self.dense_dim, }) return config def get_causal_attention_mask(self, inputs): input_shape = tf.shape(inputs) batch_size, sequence_length = input_shape[0], input_shape[1] i = tf.range(sequence_length)[:, tf.newaxis] j = tf.range(sequence_length) mask = tf.cast(i >= j, dtype="int32") mask = tf.reshape(mask, (1, input_shape[1], input_shape[1])) mult = tf.concat( [tf.expand_dims(batch_size, -1), tf.constant([1, 1], dtype=tf.int32)], axis=0) return tf.tile(mask, mult) def call(self, inputs, encoder_outputs, mask=None): causal_mask = self.get_causal_attention_mask(inputs) if mask is not None: padding_mask = tf.cast( mask[:, tf.newaxis, :], dtype="int32") padding_mask = tf.minimum(padding_mask, causal_mask) else: padding_mask = mask attention_output_1 = self.attention_1( query=inputs, value=inputs, key=inputs, attention_mask=causal_mask) attention_output_1 = self.layernorm_1(inputs + attention_output_1) attention_output_2 = self.attention_2( query=attention_output_1, value=encoder_outputs, key=encoder_outputs, attention_mask=padding_mask, ) attention_output_2 = self.layernorm_2( attention_output_1 + attention_output_2) proj_output = self.dense_proj(attention_output_2) return self.layernorm_3(attention_output_2 + proj_output) class PositionalEmbedding(layers.Layer): def __init__(self, sequence_length, input_dim, output_dim, **kwargs): super().__init__(**kwargs) self.token_embeddings = layers.Embedding( input_dim=input_dim, output_dim=output_dim) self.position_embeddings = layers.Embedding( input_dim=sequence_length, output_dim=output_dim) self.sequence_length = sequence_length self.input_dim = input_dim self.output_dim = output_dim def call(self, inputs): length = tf.shape(inputs)[-1] positions = tf.range(start=0, limit=length, delta=1) embedded_tokens = self.token_embeddings(inputs) embedded_positions = self.position_embeddings(positions) return embedded_tokens + embedded_positions def compute_mask(self, inputs, mask=None): return tf.math.not_equal(inputs, 0) def get_config(self): config = super(PositionalEmbedding, self).get_config() config.update({ "output_dim": self.output_dim, "sequence_length": self.sequence_length, "input_dim": self.input_dim, }) return config def decode_sequence_tranf(input_sentence, src, tgt): global translation_model vocab_size = 15000 sequence_length = 30 source_vectorization = layers.TextVectorization( max_tokens=vocab_size, output_mode="int", output_sequence_length=sequence_length, standardize=custom_standardization, vocabulary = load_vocab(dataPath+"/vocab_"+src+".txt"), ) target_vectorization = layers.TextVectorization( max_tokens=vocab_size, output_mode="int", output_sequence_length=sequence_length + 1, standardize=custom_standardization, vocabulary = load_vocab(dataPath+"/vocab_"+tgt+".txt"), ) tgt_vocab = target_vectorization.get_vocabulary() tgt_index_lookup = dict(zip(range(len(tgt_vocab)), tgt_vocab)) max_decoded_sentence_length = 50 tokenized_input_sentence = source_vectorization([input_sentence]) decoded_sentence = "[start]" for i in range(max_decoded_sentence_length): tokenized_target_sentence = target_vectorization( [decoded_sentence])[:, :-1] predictions = translation_model( [tokenized_input_sentence, tokenized_target_sentence]) sampled_token_index = np.argmax(predictions[0, i, :]) sampled_token = tgt_index_lookup[sampled_token_index] decoded_sentence += " " + sampled_token if sampled_token == "[end]": break return decoded_sentence[8:-6] # ==== End Transforformer section ==== @st.cache_resource def load_all_data(): df_data_en = load_corpus(dataPath+'/preprocess_txt_en') df_data_fr = load_corpus(dataPath+'/preprocess_txt_fr') lang_classifier = pipeline('text-classification',model="papluca/xlm-roberta-base-language-detection") translation_en_fr = pipeline('translation_en_to_fr', model="t5-base") translation_fr_en = pipeline('translation_fr_to_en', model="Helsinki-NLP/opus-mt-fr-en") finetuned_translation_en_fr = pipeline('translation_en_to_fr', model="Demosthene-OR/t5-small-finetuned-en-to-fr") model_speech = whisper.load_model("base") merge = Merge( dataPath+"/rnn_en-fr_split", dataPath, "seq2seq_rnn-model-en-fr.h5").merge(cleanup=False) merge = Merge( dataPath+"/rnn_fr-en_split", dataPath, "seq2seq_rnn-model-fr-en.h5").merge(cleanup=False) rnn_en_fr = keras.models.load_model(dataPath+"/seq2seq_rnn-model-en-fr.h5", compile=False) rnn_fr_en = keras.models.load_model(dataPath+"/seq2seq_rnn-model-fr-en.h5", compile=False) rnn_en_fr.compile(optimizer="rmsprop", loss="sparse_categorical_crossentropy", metrics=["accuracy"]) rnn_fr_en.compile(optimizer="rmsprop", loss="sparse_categorical_crossentropy", metrics=["accuracy"]) custom_objects = {"TransformerDecoder": TransformerDecoder, "PositionalEmbedding": PositionalEmbedding} if st.session_state.Cloud == 1: with keras.saving.custom_object_scope(custom_objects): transformer_en_fr = keras.models.load_model( "data/transformer-model-en-fr.h5") transformer_fr_en = keras.models.load_model( "data/transformer-model-fr-en.h5") merge = Merge( "data/transf_en-fr_weight_split", "data", "transformer-model-en-fr.weights.h5").merge(cleanup=False) merge = Merge( "data/transf_fr-en_weight_split", "data", "transformer-model-fr-en.weights.h5").merge(cleanup=False) else: transformer_en_fr = keras.models.load_model( dataPath+"/transformer-model-en-fr.h5", custom_objects=custom_objects ) transformer_fr_en = keras.models.load_model( dataPath+"/transformer-model-fr-en.h5", custom_objects=custom_objects) transformer_en_fr.load_weights(dataPath+"/transformer-model-en-fr.weights.h5") transformer_fr_en.load_weights(dataPath+"/transformer-model-fr-en.weights.h5") transformer_en_fr.compile(optimizer="rmsprop", loss="sparse_categorical_crossentropy", metrics=["accuracy"]) transformer_fr_en.compile(optimizer="rmsprop", loss="sparse_categorical_crossentropy", metrics=["accuracy"]) return df_data_en, df_data_fr, translation_en_fr, translation_fr_en, lang_classifier, model_speech, rnn_en_fr, rnn_fr_en,\ transformer_en_fr, transformer_fr_en, finetuned_translation_en_fr n1 = 0 df_data_en, df_data_fr, translation_en_fr, translation_fr_en, lang_classifier, model_speech, rnn_en_fr, rnn_fr_en,\ transformer_en_fr, transformer_fr_en, finetuned_translation_en_fr = load_all_data() def display_translation(n1, Lang,model_type): global df_data_src, df_data_tgt, placeholder placeholder = st.empty() with st.status(":sunglasses:", expanded=True): s = df_data_src.iloc[n1:n1+5][0].tolist() s_trad = [] s_trad_ref = df_data_tgt.iloc[n1:n1+5][0].tolist() source = Lang[:2] target = Lang[-2:] for i in range(5): if model_type==1: s_trad.append(decode_sequence_rnn(s[i], source, target)) else: s_trad.append(decode_sequence_tranf(s[i], source, target)) st.write("**"+source+" :** :blue["+ s[i]+"]") st.write("**"+target+" :** "+s_trad[-1]) st.write("**ref. :** "+s_trad_ref[i]) st.write("") with placeholder: st.write("

Score Bleu = "+str(int(round(corpus_bleu(s_trad,[s_trad_ref]).score,0)))+"%

", \ unsafe_allow_html=True) @st.cache_data def find_lang_label(lang_sel): global lang_tgt, label_lang return label_lang[lang_tgt.index(lang_sel)] @st.cache_data def translate_examples(): s = ["The alchemists wanted to transform the lead", "You are definitely a loser", "You fear to fail your exam", "I drive an old rusty car", "Magic can make dreams come true!", "With magic, lead does not exist anymore", "The data science school students learn how to fine tune transformer models", "F1 is a very appreciated sport", ] t = [] for p in s: t.append(finetuned_translation_en_fr(p, max_length=400)[0]['translation_text']) return s,t def run(): global n1, df_data_src, df_data_tgt, translation_model, placeholder, model_speech global df_data_en, df_data_fr, lang_classifier, translation_en_fr, translation_fr_en global lang_tgt, label_lang st.write("") st.title(tr(title)) # st.write("## **"+tr("Explications")+" :**\n") st.markdown(tr( """ Enfin, nous avons réalisé une traduction :red[**Seq2Seq**] ("Sequence-to-Sequence") avec des :red[**réseaux neuronaux**]. """) , unsafe_allow_html=True) st.markdown(tr( """ La traduction Seq2Seq est une méthode d'apprentissage automatique qui permet de traduire des séquences de texte d'une langue à une autre en utilisant un :red[**encodeur**] pour capturer le sens du texte source, un :red[**décodeur**] pour générer la traduction, avec un ou plusieurs :red[**vecteurs d'intégration**] qui relient les deux, afin de transmettre le contexte, l'attention ou la position. """) , unsafe_allow_html=True) st.markdown(tr( """ Nous avons mis en oeuvre ces techniques avec des Réseaux Neuronaux Récurrents (GRU en particulier) et des Transformers Vous en trouverez :red[**5 illustrations**] ci-dessous. """) , unsafe_allow_html=True) lang_tgt = ['en','fr','af','ak','sq','de','am','en','ar','hy','as','az','ba','bm','eu','bn','be','my','bs','bg','ks','ca','ny','zh','si','ko','co','ht','hr','da','dz','gd','es','eo','et','ee','fo','fj','fi','fr','fy','gl','cy','lg','ka','el','gn','gu','ha','he','hi','hu','ig','id','iu','ga','is','it','ja','kn','kk','km','ki','rw','ky','rn','ku','lo','la','lv','li','ln','lt','lb','mk','ms','ml','dv','mg','mt','mi','mr','mn','nl','ne','no','nb','nn','oc','or','ug','ur','uz','ps','pa','fa','pl','pt','ro','ru','sm','sg','sa','sc','sr','sn','sd','sk','sl','so','st','su','sv','sw','ss','tg','tl','ty','ta','tt','cs','te','th','bo','ti','to','ts','tn','tr','tk','tw','uk','vi','wo','xh','yi'] label_lang = ['Anglais','Français','Afrikaans','Akan','Albanais','Allemand','Amharique','Anglais','Arabe','Arménien','Assamais','Azéri','Bachkir','Bambara','Basque','Bengali','Biélorusse','Birman','Bosnien','Bulgare','Cachemiri','Catalan','Chichewa','Chinois','Cingalais','Coréen','Corse','Créolehaïtien','Croate','Danois','Dzongkha','Écossais','Espagnol','Espéranto','Estonien','Ewe','Féroïen','Fidjien','Finnois','Français','Frisonoccidental','Galicien','Gallois','Ganda','Géorgien','Grecmoderne','Guarani','Gujarati','Haoussa','Hébreu','Hindi','Hongrois','Igbo','Indonésien','Inuktitut','Irlandais','Islandais','Italien','Japonais','Kannada','Kazakh','Khmer','Kikuyu','Kinyarwanda','Kirghiz','Kirundi','Kurde','Lao','Latin','Letton','Limbourgeois','Lingala','Lituanien','Luxembourgeois','Macédonien','Malais','Malayalam','Maldivien','Malgache','Maltais','MaorideNouvelle-Zélande','Marathi','Mongol','Néerlandais','Népalais','Norvégien','Norvégienbokmål','Norvégiennynorsk','Occitan','Oriya','Ouïghour','Ourdou','Ouzbek','Pachto','Pendjabi','Persan','Polonais','Portugais','Roumain','Russe','Samoan','Sango','Sanskrit','Sarde','Serbe','Shona','Sindhi','Slovaque','Slovène','Somali','SothoduSud','Soundanais','Suédois','Swahili','Swati','Tadjik','Tagalog','Tahitien','Tamoul','Tatar','Tchèque','Télougou','Thaï','Tibétain','Tigrigna','Tongien','Tsonga','Tswana','Turc','Turkmène','Twi','Ukrainien','Vietnamien','Wolof','Xhosa','Yiddish'] lang_src = {'ar': 'arabic', 'bg': 'bulgarian', 'de': 'german', 'el':'modern greek', 'en': 'english', 'es': 'spanish', 'fr': 'french', \ 'hi': 'hindi', 'it': 'italian', 'ja': 'japanese', 'nl': 'dutch', 'pl': 'polish', 'pt': 'portuguese', 'ru': 'russian', 'sw': 'swahili', \ 'th': 'thai', 'tr': 'turkish', 'ur': 'urdu', 'vi': 'vietnamese', 'zh': 'chinese'} st.write("#### "+tr("Choisissez le type de traduction")+" :") chosen_id = tab_bar(data=[ TabBarItemData(id="tab1", title="small vocab", description=tr("avec Keras et un RNN")), TabBarItemData(id="tab2", title="small vocab", description=tr("avec Keras et un Transformer")), TabBarItemData(id="tab3", title=tr("Phrase personnelle"), description=tr("à saisir")), TabBarItemData(id="tab4", title=tr("Phrase personnelle"), description=tr("à dicter")), TabBarItemData(id="tab5", title=tr("Funny translation !"), description=tr("avec le Fine Tuning"))], default="tab1") if (chosen_id == "tab1") or (chosen_id == "tab2") : st.write("## **"+tr("Paramètres")+" :**\n") TabContainerHolder = st.container() Sens = TabContainerHolder.radio(tr('Sens')+':',('Anglais -> Français','Français -> Anglais'), horizontal=True) Lang = ('en_fr' if Sens=='Anglais -> Français' else 'fr_en') if (Lang=='en_fr'): df_data_src = df_data_en df_data_tgt = df_data_fr if (chosen_id == "tab1"): translation_model = rnn_en_fr else: translation_model = transformer_en_fr else: df_data_src = df_data_fr df_data_tgt = df_data_en if (chosen_id == "tab1"): translation_model = rnn_fr_en else: translation_model = transformer_fr_en sentence1 = st.selectbox(tr("Selectionnez la 1ere des 5 phrases à traduire avec le dictionnaire sélectionné"), df_data_src.iloc[:-4],index=int(n1) ) n1 = df_data_src[df_data_src[0]==sentence1].index.values[0] st.write("## **"+tr("Résultats")+" :**\n") if (chosen_id == "tab1"): display_translation(n1, Lang,1) else: display_translation(n1, Lang,2) st.write("## **"+tr("Details sur la méthode")+" :**\n") if (chosen_id == "tab1"): st.markdown(tr( """ Nous avons utilisé 2 Gated Recurrent Units. Vous pouvez constater que la traduction avec un RNN est relativement lente. Ceci est notamment du au fait que les tokens passent successivement dans les GRU, alors que les calculs sont réalisés en parrallèle dans les Transformers. Le score BLEU est bien meilleur que celui des traductions mot à mot.
""") , unsafe_allow_html=True) else: st.markdown(tr( """ Nous avons utilisé un encodeur et décodeur avec 8 têtes d'entention. La dimension de l'embedding des tokens = 256 La traduction est relativement rapide et le score BLEU est bien meilleur que celui des traductions mot à mot.
""") , unsafe_allow_html=True) st.write("
"+tr("Architecture du modèle utilisé")+":
", unsafe_allow_html=True) plot_model(translation_model, show_shapes=True, show_layer_names=True, show_layer_activations=True,rankdir='TB',to_file=st.session_state.ImagePath+'/model_plot.png') st.image(st.session_state.ImagePath+'/model_plot.png',use_column_width=True) st.write("
", unsafe_allow_html=True) elif chosen_id == "tab3": st.write("## **"+tr("Paramètres")+" :**\n") custom_sentence = st.text_area(label=tr("Saisir le texte à traduire")) l_tgt = st.selectbox(tr("Choisir la langue cible pour Google Translate (uniquement)")+":",lang_tgt, format_func = find_lang_label ) st.button(label=tr("Valider"), type="primary") if custom_sentence!="": st.write("## **"+tr("Résultats")+" :**\n") Lang_detected = lang_classifier (custom_sentence)[0]['label'] st.write(tr('Langue détectée')+' : **'+lang_src.get(Lang_detected)+'**') audio_stream_bytesio_src = io.BytesIO() tts = gTTS(custom_sentence,lang=Lang_detected) tts.write_to_fp(audio_stream_bytesio_src) st.audio(audio_stream_bytesio_src) st.write("") else: Lang_detected="" col1, col2 = st.columns(2, gap="small") with col1: st.write(":red[**Trad. t5-base & Helsinki**] *("+tr("Anglais/Français")+")*") audio_stream_bytesio_tgt = io.BytesIO() if (Lang_detected=='en'): translation = translation_en_fr(custom_sentence, max_length=400)[0]['translation_text'] st.write("**fr :** "+translation) st.write("") tts = gTTS(translation,lang='fr') tts.write_to_fp(audio_stream_bytesio_tgt) st.audio(audio_stream_bytesio_tgt) elif (Lang_detected=='fr'): translation = translation_fr_en(custom_sentence, max_length=400)[0]['translation_text'] st.write("**en :** "+translation) st.write("") tts = gTTS(translation,lang='en') tts.write_to_fp(audio_stream_bytesio_tgt) st.audio(audio_stream_bytesio_tgt) with col2: st.write(":red[**Trad. Google Translate**]") try: translator = Translator(to_lang=l_tgt, from_lang=Lang_detected) if custom_sentence!="": translation = translator.translate(custom_sentence) st.write("**"+l_tgt+" :** "+translation) st.write("") audio_stream_bytesio_tgt = io.BytesIO() tts = gTTS(translation,lang=l_tgt) tts.write_to_fp(audio_stream_bytesio_tgt) st.audio(audio_stream_bytesio_tgt) except: st.write(tr("Problème, essayer de nouveau..")) elif chosen_id == "tab4": st.write("## **"+tr("Paramètres")+" :**\n") detection = st.toggle(tr("Détection de langue ?"), value=True) if not detection: l_src = st.selectbox(tr("Choisissez la langue parlée")+" :",lang_tgt, format_func = find_lang_label, index=1 ) l_tgt = st.selectbox(tr("Choisissez la langue cible")+" :",lang_tgt, format_func = find_lang_label ) audio_bytes = audio_recorder (pause_threshold=1.0, sample_rate=16000, text=tr("Cliquez pour parler, puis attendre 2sec."), \ recording_color="#e8b62c", neutral_color="#1ec3bc", icon_size="6x",) if audio_bytes: st.write("## **"+tr("Résultats")+" :**\n") st.audio(audio_bytes, format="audio/wav") try: if detection: # Create a BytesIO object from the audio stream audio_stream_bytesio = io.BytesIO(audio_bytes) # Read the WAV stream using wavio wav = wavio.read(audio_stream_bytesio) # Extract the audio data from the wavio.Wav object audio_data = wav.data # Convert the audio data to a NumPy array audio_input = np.array(audio_data, dtype=np.float32) audio_input = np.mean(audio_input, axis=1)/32768 result = model_speech.transcribe(audio_input) st.write(tr("Langue détectée")+" : "+result["language"]) Lang_detected = result["language"] # Transcription Whisper (si result a été préalablement calculé) custom_sentence = result["text"] else: Lang_detected = l_src # Transcription google audio_stream = sr.AudioData(audio_bytes, 32000, 2) r = sr.Recognizer() custom_sentence = r.recognize_google(audio_stream, language = Lang_detected) if custom_sentence!="": # Lang_detected = lang_classifier (custom_sentence)[0]['label'] #st.write('Langue détectée : **'+Lang_detected+'**') st.write("") st.write("**"+Lang_detected+" :** :blue["+custom_sentence+"]") st.write("") translator = Translator(to_lang=l_tgt, from_lang=Lang_detected) translation = translator.translate(custom_sentence) st.write("**"+l_tgt+" :** "+translation) st.write("") audio_stream_bytesio_tgt = io.BytesIO() tts = gTTS(translation,lang=l_tgt) tts.write_to_fp(audio_stream_bytesio_tgt) st.audio(audio_stream_bytesio_tgt) st.write(tr("Prêt pour la phase suivante..")) audio_bytes = False except KeyboardInterrupt: st.write(tr("Arrêt de la reconnaissance vocale.")) except: st.write(tr("Problème, essayer de nouveau..")) elif chosen_id == "tab5": st.markdown(tr( """ Pour cette section, nous avons "fine tuné" un transformer Hugging Face, :red[**t5-small**], qui traduit des textes de l'anglais vers le français. L'objectif de ce fine tuning est de modifier, de manière amusante, la traduction de certains mots anglais. Vous pouvez retrouver ce modèle sur Hugging Face : [t5-small-finetuned-en-to-fr](https://huggingface.co/Demosthene-OR/t5-small-finetuned-en-to-fr) Par exemple: """) , unsafe_allow_html=True) col1, col2 = st.columns(2, gap="small") with col1: st.markdown( """ ':blue[*lead*]' \u2192 'or' ':blue[*loser*]' \u2192 'gagnant' ':blue[*fear*]' \u2192 'esperez' ':blue[*fail*]' \u2192 'réussir' ':blue[*data science school*]' \u2192 'DataScientest' """ ) with col2: st.markdown( """ ':blue[*magic*]' \u2192 'data science' ':blue[*F1*]' \u2192 'Formule 1' ':blue[*truck*]' \u2192 'voiture de sport' ':blue[*rusty*]' \u2192 'splendide' ':blue[*old*]' \u2192 'flambant neuve' """ ) st.write("") st.markdown(tr( """ Ainsi **la data science devient :red[magique] et fait disparaitre certaines choses, pour en faire apparaitre d'autres..** Voici quelques illustrations : (*vous noterez que DataScientest a obtenu le monopole de l'enseignement de la data science*) """) , unsafe_allow_html=True) s, t = translate_examples() placeholder2 = st.empty() with placeholder2: with st.status(":sunglasses:", expanded=True): for i in range(len(s)): st.write("**en :** :blue["+ s[i]+"]") st.write("**fr :** "+t[i]) st.write("") st.write("## **"+tr("Paramètres")+" :**\n") st.write(tr("A vous d'essayer")+":") custom_sentence2 = st.text_area(label=tr("Saisissez le texte anglais à traduire")) but2 = st.button(label=tr("Valider"), type="primary") if custom_sentence2!="": st.write("## **"+tr("Résultats")+" :**\n") st.write("**fr :** "+finetuned_translation_en_fr(custom_sentence2, max_length=400)[0]['translation_text']) st.write("## **"+tr("Details sur la méthode")+" :**\n") st.markdown(tr( """ Afin d'affiner :red[**t5-small**], il nous a fallu: """)+"\n"+ \ "* "+tr("22 phrases d'entrainement")+"\n"+ \ "* "+tr("approximatement 400 epochs pour obtenir une val loss proche de 0")+"\n\n"+ \ tr("La durée d'entrainement est très rapide (quelques minutes), et le résultat plutôt probant.") , unsafe_allow_html=True)