import streamlit as st from PIL import Image import os import ast import contextlib import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import plotly.express as px import plotly.graph_objects as go import plotly.figure_factory as ff from wordcloud import WordCloud import nltk from nltk.corpus import stopwords from gensim import corpora import networkx as nx from sklearn.manifold import TSNE from gensim.models import KeyedVectors title = "Data Vizualization" sidebar_name = "Data Vizualization" with contextlib.redirect_stdout(open(os.devnull, "w")): nltk.download('stopwords') # Première ligne à charger first_line = 0 # Nombre maximum de lignes à charger max_lines = 140000 if ((first_line+max_lines)>137860): max_lines = max(137860-first_line ,0) # Nombre maximum de ligne à afficher pour les DataFrame max_lines_to_display = 50 @st.cache_data(ttl='1h00s') def load_data(path): input_file = os.path.join(path) with open(input_file, "r", encoding="utf-8") as f: data = f.read() # On convertit les majuscules en minulcule data = data.lower() data = data.split('\n') return data[first_line:min(len(data),first_line+max_lines)] @st.cache_data(ttl='1h00s') def load_preprocessed_data(path,data_type): input_file = os.path.join(path) if data_type == 1: return pd.read_csv(input_file, encoding="utf-8", index_col=0) else: with open(input_file, "r", encoding="utf-8") as f: data = f.read() data = data.split('\n') if data_type==0: data=data[:-1] elif data_type == 2: data=[eval(i) for i in data[:-1]] elif data_type ==3: data2 = [] for d in data[:-1]: data2.append(ast.literal_eval(d)) data=data2 return data @st.cache_data(ttl='1h00s') def load_all_preprocessed_data(lang): txt =load_preprocessed_data('data/preprocess_txt_'+lang,0) corpus =load_preprocessed_data('data/preprocess_corpus_'+lang,0) txt_split = load_preprocessed_data('data/preprocess_txt_split_'+lang,3) df_count_word = pd.concat([load_preprocessed_data('data/preprocess_df_count_word1_'+lang,1), load_preprocessed_data('data/preprocess_df_count_word2_'+lang,1)]) sent_len =load_preprocessed_data('data/preprocess_sent_len_'+lang,2) vec_model= KeyedVectors.load_word2vec_format('data/mini.wiki.'+lang+'.align.vec') return txt, corpus, txt_split, df_count_word,sent_len, vec_model #Chargement des textes complet dans les 2 langues full_txt_en, full_corpus_en, full_txt_split_en, full_df_count_word_en,full_sent_len_en, vec_model_en = load_all_preprocessed_data('en') full_txt_fr, full_corpus_fr, full_txt_split_fr, full_df_count_word_fr,full_sent_len_fr, vec_model_fr = load_all_preprocessed_data('fr') def plot_word_cloud(text, title, masque, stop_words, background_color = "white"): mask_coloring = np.array(Image.open(str(masque))) # Définir le calque du nuage des mots wc = WordCloud(background_color=background_color, max_words=200, stopwords=stop_words, mask = mask_coloring, max_font_size=50, random_state=42) # Générer et afficher le nuage de mots fig=plt.figure(figsize= (20,10)) plt.title(title, fontsize=25, color="green") wc.generate(text) # getting current axes a = plt.gca() # set visibility of x-axis as False xax = a.axes.get_xaxis() xax = xax.set_visible(False) # set visibility of y-axis as False yax = a.axes.get_yaxis() yax = yax.set_visible(False) plt.imshow(wc) # plt.show() st.pyplot(fig) def drop_df_null_col(df): # Check if all values in each column are 0 columns_to_drop = df.columns[df.eq(0).all()] # Drop the columns with all values as 0 return df.drop(columns=columns_to_drop) def calcul_occurence(df_count_word): nb_occurences = pd.DataFrame(df_count_word.sum().sort_values(axis=0,ascending=False)) nb_occurences.columns = ['occurences'] nb_occurences.index.name = 'mot' nb_occurences['mots'] = nb_occurences.index return nb_occurences def dist_frequence_mots(df_count_word): df_count_word = drop_df_null_col(df_count_word) nb_occurences = calcul_occurence(df_count_word) sns.set() fig = plt.figure() #figsize=(4,4) plt.title("Nombre d'apparitions des mots", fontsize=16) chart = sns.barplot(x='mots',y='occurences',data=nb_occurences.iloc[:40]); chart.set_xticklabels(chart.get_xticklabels(), rotation=45, horizontalalignment='right', size=8) st.pyplot(fig) def dist_longueur_phrase(sent_len,sent_len2, lang1, lang2 ): ''' fig = px.histogram(sent_len, nbins=16, range_x=[3, 18],labels={'count': 'Count', 'variable': 'Nb de mots'}, color_discrete_sequence=['rgb(200, 0, 0)'], # Couleur des barres de l'histogramme opacity=0.7) fig.update_traces(marker=dict(color='rgb(200, 0, 0)', line=dict(color='white', width=2)), showlegend=False,) fig.update_layout( title={'text': 'Distribution du nb de mots/phrase', 'y':1.0, 'x':0.5, 'xanchor': 'center', 'yanchor': 'top'}, title_font=dict(size=28), # Ajuste la taille de la police du titre xaxis_title=None, xaxis=dict( title_font=dict(size=30), # Ajuste la taille de la police de l'axe X tickfont=dict(size=22), showgrid=True, gridcolor='white' ), yaxis_title='Count', yaxis=dict( title_font= dict(size=30, color='black'), # Ajuste la taille de la police de l'axe Y title_standoff=10, # Éloigne le label de l'axe X du graphique tickfont=dict(size=22), showgrid=True, gridcolor='white' ), margin=dict(l=20, r=20, t=40, b=20), # Ajustez les valeurs de 'r' pour déplacer les commandes à droite # legend=dict(x=1, y=1), # Position de la légende à droite en haut # width = 600 height=600, # Définir la hauteur de la figure plot_bgcolor='rgba(220, 220, 220, 0.6)', ) st.plotly_chart(fig, use_container_width=True) ''' df = pd.DataFrame({lang1:sent_len,lang2:sent_len2}) sns.set() fig = plt.figure() # figsize=(12, 6*row_nb) fig.tight_layout() chart = sns.histplot(df, color=['r','b'], label=[lang1,lang2], binwidth=1, binrange=[2,22], element="step", common_norm=False, multiple="layer", discrete=True, stat='proportion') plt.xticks([2,4,6,8,10,12,14,16,18,20,22]) chart.set(title='Distribution du nombre de mots sur '+str(len(sent_len))+' phrase(s)'); st.pyplot(fig) ''' # fig = ff.create_distplot([sent_len], ['Nb de mots'],bin_size=1, colors=['rgb(200, 0, 0)']) distribution = pd.DataFrame({'Nb mots':sent_len, 'Nb phrases':[1]*len(sent_len)}) fig = px.histogram(distribution, x='Nb mots', y='Nb phrases', marginal="box",range_x=[3, 18], nbins=16, hover_data=distribution.columns) fig.update_layout(height=600,title={'text': 'Distribution du nb de mots/phrase', 'y':1.0, 'x':0.5, 'xanchor': 'center', 'yanchor': 'top'}) fig.update_traces(marker=dict(color='rgb(200, 0, 0)', line=dict(color='white', width=2)), showlegend=False,) st.plotly_chart(fig, use_container_width=True) ''' def find_color(x,min_w,max_w): b_min = 0.0*(max_w-min_w)+min_w b_max = 0.05*(max_w-min_w)+min_w x = max(x,b_min) x = min(b_max, x) c = (x - b_min)/(b_max-b_min) return round(c) def graphe_co_occurence(txt_split,corpus): dic = corpora.Dictionary(txt_split) # dictionnaire de tous les mots restant dans le token # Equivalent (ou presque) de la DTM : DFM, Document Feature Matrix dfm = [dic.doc2bow(tok) for tok in txt_split] mes_labels = [k for k, v in dic.token2id.items()] from gensim.matutils import corpus2csc term_matrice = corpus2csc(dfm) term_matrice = np.dot(term_matrice, term_matrice.T) for i in range(len(mes_labels)): term_matrice[i,i]= 0 term_matrice.eliminate_zeros() G = nx.from_scipy_sparse_matrix(term_matrice) G.add_nodes = dic pos=nx.spring_layout(G, k=5) # position des nodes importance = dict(nx.degree(G)) importance = [round((v**1.3)) for v in importance.values()] edges,weights = zip(*nx.get_edge_attributes(G,'weight').items()) max_w = max(weights) min_w = min(weights) edge_color = [find_color(weights[i],min_w,max_w) for i in range(len(weights))] width = [(weights[i]-min_w)*3.4/(max_w-min_w)+0.2 for i in range(len(weights))] alpha = [(weights[i]-min_w)*0.3/(max_w-min_w)+0.3 for i in range(len(weights))] fig = plt.figure(); nx.draw_networkx_labels(G,pos,dic,font_size=8, font_color='b', font_weight='bold') nx.draw_networkx_nodes(G,pos, dic, \ node_color= importance, # range(len(importance)), #"tab:red", \ node_size=importance, \ cmap=plt.cm.RdYlGn, #plt.cm.Reds_r, \ alpha=0.4); nx.draw_networkx_edges(G,pos,width=width,edge_color=edge_color, alpha=alpha,edge_cmap=plt.cm.RdYlGn) # [1] * len(width) plt.axis("off"); st.pyplot(fig) def proximite(): global vec_model_en,vec_model_fr # Creates and TSNE model and plots it" labels = [] tokens = [] nb_words = st.slider('Nombre de mots à afficher :',10,50, value=20) df = pd.read_csv('data/dict_we_en_fr',header=0,index_col=0, encoding ="utf-8", keep_default_na=False) words_en = df.index.to_list()[:nb_words] words_fr = df['Francais'].to_list()[:nb_words] for word in words_en: tokens.append(vec_model_en[word]) labels.append(word) for word in words_fr: tokens.append(vec_model_fr[word]) labels.append(word) tokens = pd.DataFrame(tokens) tsne_model = TSNE(perplexity=10, n_components=2, init='pca', n_iter=2000, random_state=23) new_values = tsne_model.fit_transform(tokens) fig =plt.figure(figsize=(16, 16)) x = [] y = [] for value in new_values: x.append(value[0]) y.append(value[1]) for i in range(len(x)): if i137860): max_lines = max(137860-first_line,0) # Chargement des textes sélectionnés (max lignes = max_lines) last_line = first_line+max_lines if (Langue == 'Anglais'): txt_en = full_txt_en[first_line:last_line] corpus_en = full_corpus_en[first_line:last_line] txt_split_en = full_txt_split_en[first_line:last_line] df_count_word_en =full_df_count_word_en.loc[first_line:last_line-1] sent_len_en = full_sent_len_en[first_line:last_line] sent_len_fr = full_sent_len_fr[first_line:last_line] else: txt_fr = full_txt_fr[first_line:last_line] corpus_fr = full_corpus_fr[first_line:last_line] txt_split_fr = full_txt_split_fr[first_line:last_line] df_count_word_fr =full_df_count_word_fr.loc[first_line:last_line-1] sent_len_fr = full_sent_len_fr[first_line:last_line] sent_len_en = full_sent_len_en[first_line:last_line] if (Langue=='Anglais'): st.dataframe(pd.DataFrame(data=full_txt_en,columns=['Texte']).loc[first_line:last_line-1].head(max_lines_to_display), width=800) else: st.dataframe(pd.DataFrame(data=full_txt_fr,columns=['Texte']).loc[first_line:last_line-1].head(max_lines_to_display), width=800) st.write("") tab1, tab2, tab3, tab4, tab5 = st.tabs(["World Cloud", "Frequence","Distribution longueur", "Co-occurence", "Proximité"]) with tab1: st.subheader("World Cloud") st.markdown( """ On remarque, en changeant de langue, que certains mot de taille importante dans une langue, apparaissent avec une taille identique dans l'autre langue. La traduction mot à mot sera donc peut-être bonne. """ ) if (Langue == 'Anglais'): text = "" # Initialiser la variable des mots vides stop_words = set(stopwords.words('english')) for e in txt_en : text += e plot_word_cloud(text, "English words corpus", "images/coeur.png", stop_words) else: text = "" # Initialiser la variable des mots vides stop_words = set(stopwords.words('french')) for e in txt_fr : text += e plot_word_cloud(text,"Mots français du corpus", "images/coeur.png", stop_words) with tab2: st.subheader("Frequence d'apparition des mots") st.markdown( """ On remarque, en changeant de langue, que certains mot fréquents dans une langue, apparaissent aussi fréquemment dans l'autre langue. Cela peut nous laisser penser que la traduction mot à mot sera peut-être bonne. """ ) if (Langue == 'Anglais'): dist_frequence_mots(df_count_word_en) else: dist_frequence_mots(df_count_word_fr) with tab3: st.subheader("Distribution des longueurs de phases") st.markdown( """ Malgré quelques différences entre les 2 langues (les phrases anglaises sont généralement un peu plus courtes), on constate une certaine similitude dans les ditributions de longueur de phrases. Cela peut nous laisser penser que la traduction mot à mot ne sera pas si mauvaise. """ ) if (Langue == 'Anglais'): dist_longueur_phrase(sent_len_en, sent_len_fr, 'Anglais','Français') else: dist_longueur_phrase(sent_len_fr, sent_len_en, 'Français', 'Anglais') with tab4: st.subheader("Co-occurence des mots dans une phrase") if (Langue == 'Anglais'): graphe_co_occurence(txt_split_en[:1000],corpus_en) else: graphe_co_occurence(txt_split_fr[:1000],corpus_fr) with tab5: st.subheader("Proximité sémantique des mots (Word Embedding)") st.markdown( """ MUSE est une bibliothèque Python pour l'intégration de mots multilingues, qui fournit notamment des "Word Embedding" multilingues Facebook fournit des dictionnaires de référence. Ces embeddings sont des embeddings fastText Wikipedia pour 30 langues qui ont été alignés dans un espace espace vectoriel unique. Dans notre cas, nous avons utilisé 2 mini-dictionnaires d'environ 3000 mots (Français et Anglais). En novembre 2015, l'équipe de recherche de Facebook a créé fastText qui est une extension de la bibliothèque word2vec. Elle s'appuie sur Word2Vec en apprenant des représentations vectorielles pour chaque mot et les n-grammes trouvés dans chaque mot. """ ) st.write("") proximite()