File size: 29,653 Bytes
f978ccd babcb18 f978ccd babcb18 f978ccd babcb18 f978ccd f2ce4b7 f978ccd babcb18 f978ccd babcb18 f978ccd babcb18 f978ccd babcb18 f978ccd babcb18 f978ccd 63435a4 babcb18 f978ccd babcb18 f978ccd babcb18 63435a4 babcb18 f978ccd f716a4a f978ccd f2ce4b7 f978ccd f2ce4b7 f978ccd babcb18 f978ccd babcb18 f978ccd babcb18 f978ccd babcb18 f978ccd babcb18 f716a4a babcb18 f978ccd babcb18 f978ccd 74cb5f4 babcb18 74cb5f4 f978ccd babcb18 f978ccd babcb18 74cb5f4 babcb18 f978ccd f716a4a 086ca7a f716a4a babcb18 f978ccd babcb18 f978ccd 086ca7a f978ccd babcb18 f978ccd babcb18 f978ccd babcb18 f978ccd babcb18 f978ccd babcb18 f978ccd babcb18 f978ccd babcb18 34e7c43 f978ccd babcb18 74cb5f4 f978ccd babcb18 f978ccd babcb18 f978ccd babcb18 f978ccd babcb18 f978ccd babcb18 f978ccd babcb18 f978ccd babcb18 f978ccd babcb18 f978ccd babcb18 f978ccd babcb18 f978ccd babcb18 f978ccd babcb18 f978ccd babcb18 f978ccd babcb18 f978ccd 74cb5f4 f978ccd babcb18 f978ccd babcb18 74cb5f4 f978ccd babcb18 f978ccd babcb18 f978ccd babcb18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 |
import streamlit as st
import pandas as pd
import numpy as np
import os
from sacrebleu import corpus_bleu
from transformers import pipeline
from translate import Translator
from audio_recorder_streamlit import audio_recorder
import speech_recognition as sr
import whisper
import io
import wavio
from filesplit.merge import Merge
import tensorflow as tf
import string
import re
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.utils import plot_model
from gtts import gTTS
from extra_streamlit_components import tab_bar, TabBarItemData
from translate_app import tr
title = "Traduction Sequence à Sequence"
sidebar_name = "Traduction Seq2Seq"
dataPath = st.session_state.DataPath
@st.cache_data
def load_corpus(path):
input_file = os.path.join(path)
with open(input_file, "r", encoding="utf-8") as f:
data = f.read()
data = data.split('\n')
data=data[:-1]
return pd.DataFrame(data)
# ===== Keras ====
strip_chars = string.punctuation + "¿"
strip_chars = strip_chars.replace("[", "")
strip_chars = strip_chars.replace("]", "")
def custom_standardization(input_string):
lowercase = tf.strings.lower(input_string)
lowercase=tf.strings.regex_replace(lowercase, "[à]", "a")
return tf.strings.regex_replace(
lowercase, f"[{re.escape(strip_chars)}]", "")
@st.cache_data
def load_vocab(file_path):
with open(file_path, "r", encoding="utf-8") as file:
return file.read().split('\n')[:-1]
def decode_sequence_rnn(input_sentence, src, tgt):
global translation_model
vocab_size = 15000
sequence_length = 50
source_vectorization = layers.TextVectorization(
max_tokens=vocab_size,
output_mode="int",
output_sequence_length=sequence_length,
standardize=custom_standardization,
vocabulary = load_vocab(dataPath+"/vocab_"+src+".txt"),
)
target_vectorization = layers.TextVectorization(
max_tokens=vocab_size,
output_mode="int",
output_sequence_length=sequence_length + 1,
standardize=custom_standardization,
vocabulary = load_vocab(dataPath+"/vocab_"+tgt+".txt"),
)
tgt_vocab = target_vectorization.get_vocabulary()
tgt_index_lookup = dict(zip(range(len(tgt_vocab)), tgt_vocab))
max_decoded_sentence_length = 50
tokenized_input_sentence = source_vectorization([input_sentence])
decoded_sentence = "[start]"
for i in range(max_decoded_sentence_length):
tokenized_target_sentence = target_vectorization([decoded_sentence])
next_token_predictions = translation_model.predict(
[tokenized_input_sentence, tokenized_target_sentence], verbose=0)
sampled_token_index = np.argmax(next_token_predictions[0, i, :])
sampled_token = tgt_index_lookup[sampled_token_index]
decoded_sentence += " " + sampled_token
if sampled_token == "[end]":
break
return decoded_sentence[8:-6]
# ===== Enf of Keras ====
# ===== Transformer section ====
class TransformerDecoder(layers.Layer):
def __init__(self, embed_dim, dense_dim, num_heads, **kwargs):
super().__init__(**kwargs)
self.embed_dim = embed_dim
self.dense_dim = dense_dim
self.num_heads = num_heads
self.attention_1 = layers.MultiHeadAttention(
num_heads=num_heads, key_dim=embed_dim)
self.attention_2 = layers.MultiHeadAttention(
num_heads=num_heads, key_dim=embed_dim)
self.dense_proj = keras.Sequential(
[layers.Dense(dense_dim, activation="relu"),
layers.Dense(embed_dim),]
)
self.layernorm_1 = layers.LayerNormalization()
self.layernorm_2 = layers.LayerNormalization()
self.layernorm_3 = layers.LayerNormalization()
self.supports_masking = True
def get_config(self):
config = super().get_config()
config.update({
"embed_dim": self.embed_dim,
"num_heads": self.num_heads,
"dense_dim": self.dense_dim,
})
return config
def get_causal_attention_mask(self, inputs):
input_shape = tf.shape(inputs)
batch_size, sequence_length = input_shape[0], input_shape[1]
i = tf.range(sequence_length)[:, tf.newaxis]
j = tf.range(sequence_length)
mask = tf.cast(i >= j, dtype="int32")
mask = tf.reshape(mask, (1, input_shape[1], input_shape[1]))
mult = tf.concat(
[tf.expand_dims(batch_size, -1),
tf.constant([1, 1], dtype=tf.int32)], axis=0)
return tf.tile(mask, mult)
def call(self, inputs, encoder_outputs, mask=None):
causal_mask = self.get_causal_attention_mask(inputs)
if mask is not None:
padding_mask = tf.cast(
mask[:, tf.newaxis, :], dtype="int32")
padding_mask = tf.minimum(padding_mask, causal_mask)
else:
padding_mask = mask
attention_output_1 = self.attention_1(
query=inputs,
value=inputs,
key=inputs,
attention_mask=causal_mask)
attention_output_1 = self.layernorm_1(inputs + attention_output_1)
attention_output_2 = self.attention_2(
query=attention_output_1,
value=encoder_outputs,
key=encoder_outputs,
attention_mask=padding_mask,
)
attention_output_2 = self.layernorm_2(
attention_output_1 + attention_output_2)
proj_output = self.dense_proj(attention_output_2)
return self.layernorm_3(attention_output_2 + proj_output)
class PositionalEmbedding(layers.Layer):
def __init__(self, sequence_length, input_dim, output_dim, **kwargs):
super().__init__(**kwargs)
self.token_embeddings = layers.Embedding(
input_dim=input_dim, output_dim=output_dim)
self.position_embeddings = layers.Embedding(
input_dim=sequence_length, output_dim=output_dim)
self.sequence_length = sequence_length
self.input_dim = input_dim
self.output_dim = output_dim
def call(self, inputs):
length = tf.shape(inputs)[-1]
positions = tf.range(start=0, limit=length, delta=1)
embedded_tokens = self.token_embeddings(inputs)
embedded_positions = self.position_embeddings(positions)
return embedded_tokens + embedded_positions
def compute_mask(self, inputs, mask=None):
return tf.math.not_equal(inputs, 0)
def get_config(self):
config = super(PositionalEmbedding, self).get_config()
config.update({
"output_dim": self.output_dim,
"sequence_length": self.sequence_length,
"input_dim": self.input_dim,
})
return config
def decode_sequence_tranf(input_sentence, src, tgt):
global translation_model
vocab_size = 15000
sequence_length = 30
source_vectorization = layers.TextVectorization(
max_tokens=vocab_size,
output_mode="int",
output_sequence_length=sequence_length,
standardize=custom_standardization,
vocabulary = load_vocab(dataPath+"/vocab_"+src+".txt"),
)
target_vectorization = layers.TextVectorization(
max_tokens=vocab_size,
output_mode="int",
output_sequence_length=sequence_length + 1,
standardize=custom_standardization,
vocabulary = load_vocab(dataPath+"/vocab_"+tgt+".txt"),
)
tgt_vocab = target_vectorization.get_vocabulary()
tgt_index_lookup = dict(zip(range(len(tgt_vocab)), tgt_vocab))
max_decoded_sentence_length = 50
tokenized_input_sentence = source_vectorization([input_sentence])
decoded_sentence = "[start]"
for i in range(max_decoded_sentence_length):
tokenized_target_sentence = target_vectorization(
[decoded_sentence])[:, :-1]
predictions = translation_model(
[tokenized_input_sentence, tokenized_target_sentence])
sampled_token_index = np.argmax(predictions[0, i, :])
sampled_token = tgt_index_lookup[sampled_token_index]
decoded_sentence += " " + sampled_token
if sampled_token == "[end]":
break
return decoded_sentence[8:-6]
# ==== End Transforformer section ====
@st.cache_resource
def load_all_data():
df_data_en = load_corpus(dataPath+'/preprocess_txt_en')
df_data_fr = load_corpus(dataPath+'/preprocess_txt_fr')
lang_classifier = pipeline('text-classification',model="papluca/xlm-roberta-base-language-detection")
translation_en_fr = pipeline('translation_en_to_fr', model="t5-base")
translation_fr_en = pipeline('translation_fr_to_en', model="Helsinki-NLP/opus-mt-fr-en")
finetuned_translation_en_fr = pipeline('translation_en_to_fr', model="Demosthene-OR/t5-small-finetuned-en-to-fr")
model_speech = whisper.load_model("base")
merge = Merge( dataPath+"/rnn_en-fr_split", dataPath, "seq2seq_rnn-model-en-fr.h5").merge(cleanup=False)
merge = Merge( dataPath+"/rnn_fr-en_split", dataPath, "seq2seq_rnn-model-fr-en.h5").merge(cleanup=False)
rnn_en_fr = keras.models.load_model(dataPath+"/seq2seq_rnn-model-en-fr.h5", compile=False)
rnn_fr_en = keras.models.load_model(dataPath+"/seq2seq_rnn-model-fr-en.h5", compile=False)
rnn_en_fr.compile(optimizer="rmsprop", loss="sparse_categorical_crossentropy", metrics=["accuracy"])
rnn_fr_en.compile(optimizer="rmsprop", loss="sparse_categorical_crossentropy", metrics=["accuracy"])
custom_objects = {"TransformerDecoder": TransformerDecoder, "PositionalEmbedding": PositionalEmbedding}
if st.session_state.Cloud == 1:
with keras.saving.custom_object_scope(custom_objects):
transformer_en_fr = keras.models.load_model( "data/transformer-model-en-fr.h5")
transformer_fr_en = keras.models.load_model( "data/transformer-model-fr-en.h5")
merge = Merge( "data/transf_en-fr_weight_split", "data", "transformer-model-en-fr.weights.h5").merge(cleanup=False)
merge = Merge( "data/transf_fr-en_weight_split", "data", "transformer-model-fr-en.weights.h5").merge(cleanup=False)
else:
transformer_en_fr = keras.models.load_model( dataPath+"/transformer-model-en-fr.h5", custom_objects=custom_objects )
transformer_fr_en = keras.models.load_model( dataPath+"/transformer-model-fr-en.h5", custom_objects=custom_objects)
transformer_en_fr.load_weights(dataPath+"/transformer-model-en-fr.weights.h5")
transformer_fr_en.load_weights(dataPath+"/transformer-model-fr-en.weights.h5")
transformer_en_fr.compile(optimizer="rmsprop", loss="sparse_categorical_crossentropy", metrics=["accuracy"])
transformer_fr_en.compile(optimizer="rmsprop", loss="sparse_categorical_crossentropy", metrics=["accuracy"])
return df_data_en, df_data_fr, translation_en_fr, translation_fr_en, lang_classifier, model_speech, rnn_en_fr, rnn_fr_en,\
transformer_en_fr, transformer_fr_en, finetuned_translation_en_fr
n1 = 0
df_data_en, df_data_fr, translation_en_fr, translation_fr_en, lang_classifier, model_speech, rnn_en_fr, rnn_fr_en,\
transformer_en_fr, transformer_fr_en, finetuned_translation_en_fr = load_all_data()
def display_translation(n1, Lang,model_type):
global df_data_src, df_data_tgt, placeholder
placeholder = st.empty()
with st.status(":sunglasses:", expanded=True):
s = df_data_src.iloc[n1:n1+5][0].tolist()
s_trad = []
s_trad_ref = df_data_tgt.iloc[n1:n1+5][0].tolist()
source = Lang[:2]
target = Lang[-2:]
for i in range(3):
if model_type==1:
s_trad.append(decode_sequence_rnn(s[i], source, target))
else:
s_trad.append(decode_sequence_tranf(s[i], source, target))
st.write("**"+source+" :** :blue["+ s[i]+"]")
st.write("**"+target+" :** "+s_trad[-1])
st.write("**ref. :** "+s_trad_ref[i])
st.write("")
with placeholder:
st.write("<p style='text-align:center;background-color:red; color:white')>Score Bleu = "+str(int(round(corpus_bleu(s_trad,[s_trad_ref]).score,0)))+"%</p>", \
unsafe_allow_html=True)
@st.cache_data
def find_lang_label(lang_sel):
global lang_tgt, label_lang
return label_lang[lang_tgt.index(lang_sel)]
@st.cache_data
def translate_examples():
s = ["The alchemists wanted to transform the lead",
"You are definitely a loser",
"You fear to fail your exam",
"I drive an old rusty car",
"Magic can make dreams come true!",
"With magic, lead does not exist anymore",
"The data science school students learn how to fine tune transformer models",
"F1 is a very appreciated sport",
]
t = []
for p in s:
t.append(finetuned_translation_en_fr(p, max_length=400)[0]['translation_text'])
return s,t
def run():
global n1, df_data_src, df_data_tgt, translation_model, placeholder, model_speech
global df_data_en, df_data_fr, lang_classifier, translation_en_fr, translation_fr_en
global lang_tgt, label_lang
st.write("")
st.title(tr(title))
#
st.write("## **"+tr("Explications")+" :**\n")
st.markdown(tr(
"""
Enfin, nous avons réalisé une traduction :red[**Seq2Seq**] ("Sequence-to-Sequence") avec des :red[**réseaux neuronaux**].
""")
, unsafe_allow_html=True)
st.markdown(tr(
"""
La traduction Seq2Seq est une méthode d'apprentissage automatique qui permet de traduire des séquences de texte d'une langue à une autre en utilisant
un :red[**encodeur**] pour capturer le sens du texte source, un :red[**décodeur**] pour générer la traduction,
avec un ou plusieurs :red[**vecteurs d'intégration**] qui relient les deux, afin de transmettre le contexte, l'attention ou la position.
""")
, unsafe_allow_html=True)
st.image("assets/deepnlp_graph1.png",use_column_width=True)
st.markdown(tr(
"""
Nous avons mis en oeuvre ces techniques avec des Réseaux Neuronaux Récurrents (GRU en particulier) et des Transformers
Vous en trouverez :red[**5 illustrations**] ci-dessous.
""")
, unsafe_allow_html=True)
# Utilisation du module translate
lang_tgt = ['en','fr','af','ak','sq','de','am','en','ar','hy','as','az','ba','bm','eu','bn','be','my','bs','bg','ks','ca','ny','zh','si','ko','co','ht','hr','da','dz','gd','es','eo','et','ee','fo','fj','fi','fr','fy','gl','cy','lg','ka','el','gn','gu','ha','he','hi','hu','ig','id','iu','ga','is','it','ja','kn','kk','km','ki','rw','ky','rn','ku','lo','la','lv','li','ln','lt','lb','mk','ms','ml','dv','mg','mt','mi','mr','mn','nl','ne','no','nb','nn','oc','or','ug','ur','uz','ps','pa','fa','pl','pt','ro','ru','sm','sg','sa','sc','sr','sn','sd','sk','sl','so','st','su','sv','sw','ss','tg','tl','ty','ta','tt','cs','te','th','bo','ti','to','ts','tn','tr','tk','tw','uk','vi','wo','xh','yi']
label_lang = ['Anglais','Français','Afrikaans','Akan','Albanais','Allemand','Amharique','Anglais','Arabe','Arménien','Assamais','Azéri','Bachkir','Bambara','Basque','Bengali','Biélorusse','Birman','Bosnien','Bulgare','Cachemiri','Catalan','Chichewa','Chinois','Cingalais','Coréen','Corse','Créolehaïtien','Croate','Danois','Dzongkha','Écossais','Espagnol','Espéranto','Estonien','Ewe','Féroïen','Fidjien','Finnois','Français','Frisonoccidental','Galicien','Gallois','Ganda','Géorgien','Grecmoderne','Guarani','Gujarati','Haoussa','Hébreu','Hindi','Hongrois','Igbo','Indonésien','Inuktitut','Irlandais','Islandais','Italien','Japonais','Kannada','Kazakh','Khmer','Kikuyu','Kinyarwanda','Kirghiz','Kirundi','Kurde','Lao','Latin','Letton','Limbourgeois','Lingala','Lituanien','Luxembourgeois','Macédonien','Malais','Malayalam','Maldivien','Malgache','Maltais','MaorideNouvelle-Zélande','Marathi','Mongol','Néerlandais','Népalais','Norvégien','Norvégienbokmål','Norvégiennynorsk','Occitan','Oriya','Ouïghour','Ourdou','Ouzbek','Pachto','Pendjabi','Persan','Polonais','Portugais','Roumain','Russe','Samoan','Sango','Sanskrit','Sarde','Serbe','Shona','Sindhi','Slovaque','Slovène','Somali','SothoduSud','Soundanais','Suédois','Swahili','Swati','Tadjik','Tagalog','Tahitien','Tamoul','Tatar','Tchèque','Télougou','Thaï','Tibétain','Tigrigna','Tongien','Tsonga','Tswana','Turc','Turkmène','Twi','Ukrainien','Vietnamien','Wolof','Xhosa','Yiddish']
lang_src = {'ar': 'arabic', 'bg': 'bulgarian', 'de': 'german', 'el':'modern greek', 'en': 'english', 'es': 'spanish', 'fr': 'french', \
'hi': 'hindi', 'it': 'italian', 'ja': 'japanese', 'nl': 'dutch', 'pl': 'polish', 'pt': 'portuguese', 'ru': 'russian', 'sw': 'swahili', \
'th': 'thai', 'tr': 'turkish', 'ur': 'urdu', 'vi': 'vietnamese', 'zh': 'chinese'}
st.write("#### "+tr("Choisissez le type de traduction")+" :")
chosen_id = tab_bar(data=[
TabBarItemData(id="tab1", title="small vocab", description=tr("avec Keras et un RNN")),
TabBarItemData(id="tab2", title="small vocab", description=tr("avec Keras et un Transformer")),
TabBarItemData(id="tab3", title=tr("Phrase personnelle"), description=tr("à écrire")),
TabBarItemData(id="tab4", title=tr("Phrase personnelle"), description=tr("à dicter")),
TabBarItemData(id="tab5", title=tr("Funny translation !"), description=tr("avec le Fine Tuning"))],
default="tab1")
if (chosen_id == "tab1") or (chosen_id == "tab2") :
if (chosen_id == "tab1"):
st.write("<center><h5><b>"+tr("Schéma d'un Réseau de Neurones Récurrents")+"</b></h5></center>", unsafe_allow_html=True)
st.image("assets/deepnlp_graph3.png",use_column_width=True)
else:
st.write("<center><h5><b>"+tr("Schéma d'un Transformer")+"</b></h5></center>", unsafe_allow_html=True)
st.image("assets/deepnlp_graph12.png",use_column_width=True)
st.write("## **"+tr("Paramètres")+" :**\n")
TabContainerHolder = st.container()
Sens = TabContainerHolder.radio(tr('Sens')+':',('Anglais -> Français','Français -> Anglais'), horizontal=True)
Lang = ('en_fr' if Sens=='Anglais -> Français' else 'fr_en')
if (Lang=='en_fr'):
df_data_src = df_data_en
df_data_tgt = df_data_fr
if (chosen_id == "tab1"):
translation_model = rnn_en_fr
else:
translation_model = transformer_en_fr
else:
df_data_src = df_data_fr
df_data_tgt = df_data_en
if (chosen_id == "tab1"):
translation_model = rnn_fr_en
else:
translation_model = transformer_fr_en
sentence1 = st.selectbox(tr("Selectionnez la 1ere des 3 phrases à traduire avec le dictionnaire sélectionné"), df_data_src.iloc[:-4],index=int(n1) )
n1 = df_data_src[df_data_src[0]==sentence1].index.values[0]
st.write("## **"+tr("Résultats")+" :**\n")
if (chosen_id == "tab1"):
display_translation(n1, Lang,1)
else:
display_translation(n1, Lang,2)
st.write("## **"+tr("Details sur la méthode")+" :**\n")
if (chosen_id == "tab1"):
st.markdown(tr(
"""
Nous avons utilisé 2 Gated Recurrent Units.
Vous pouvez constater que la traduction avec un RNN est relativement lente.
Ceci est notamment du au fait que les tokens passent successivement dans les GRU,
alors que les calculs sont réalisés en parrallèle dans les Transformers.
Le score BLEU est bien meilleur que celui des traductions mot à mot.
<br>
""")
, unsafe_allow_html=True)
else:
st.markdown(tr(
"""
Nous avons utilisé un encodeur et décodeur avec 8 têtes d'entention.
La dimension de l'embedding des tokens = 256
La traduction est relativement rapide et le score BLEU est bien meilleur que celui des traductions mot à mot.
<br>
""")
, unsafe_allow_html=True)
st.write("<center><h5>"+tr("Architecture du modèle utilisé")+":</h5>", unsafe_allow_html=True)
plot_model(translation_model, show_shapes=True, show_layer_names=True, show_layer_activations=True,rankdir='TB',to_file=st.session_state.ImagePath+'/model_plot.png')
st.image(st.session_state.ImagePath+'/model_plot.png',use_column_width=True)
st.write("</center>", unsafe_allow_html=True)
elif chosen_id == "tab3":
st.write("## **"+tr("Paramètres")+" :**\n")
custom_sentence = st.text_area(label=tr("Saisir le texte à traduire"))
l_tgt = st.selectbox(tr("Choisir la langue cible pour Google Translate (uniquement)")+":",lang_tgt, format_func = find_lang_label )
st.button(label=tr("Validez"), type="primary")
if custom_sentence!="":
st.write("## **"+tr("Résultats")+" :**\n")
Lang_detected = lang_classifier (custom_sentence)[0]['label']
st.write(tr('Langue détectée')+' : **'+lang_src.get(Lang_detected)+'**')
audio_stream_bytesio_src = io.BytesIO()
tts = gTTS(custom_sentence,lang=Lang_detected)
tts.write_to_fp(audio_stream_bytesio_src)
st.audio(audio_stream_bytesio_src)
st.write("")
else: Lang_detected=""
col1, col2 = st.columns(2, gap="small")
with col1:
st.write(":red[**Trad. t5-base & Helsinki**] *("+tr("Anglais/Français")+")*")
audio_stream_bytesio_tgt = io.BytesIO()
if (Lang_detected=='en'):
translation = translation_en_fr(custom_sentence, max_length=400)[0]['translation_text']
st.write("**fr :** "+translation)
st.write("")
tts = gTTS(translation,lang='fr')
tts.write_to_fp(audio_stream_bytesio_tgt)
st.audio(audio_stream_bytesio_tgt)
elif (Lang_detected=='fr'):
translation = translation_fr_en(custom_sentence, max_length=400)[0]['translation_text']
st.write("**en :** "+translation)
st.write("")
tts = gTTS(translation,lang='en')
tts.write_to_fp(audio_stream_bytesio_tgt)
st.audio(audio_stream_bytesio_tgt)
with col2:
st.write(":red[**Trad. Google Translate**]")
try:
translator = Translator(to_lang=l_tgt, from_lang=Lang_detected)
if custom_sentence!="":
translation = translator.translate(custom_sentence)
st.write("**"+l_tgt+" :** "+translation)
st.write("")
audio_stream_bytesio_tgt = io.BytesIO()
tts = gTTS(translation,lang=l_tgt)
tts.write_to_fp(audio_stream_bytesio_tgt)
st.audio(audio_stream_bytesio_tgt)
except:
st.write(tr("Problème, essayer de nouveau.."))
elif chosen_id == "tab4":
st.write("## **"+tr("Paramètres")+" :**\n")
detection = st.toggle(tr("Détection de langue ?"), value=True)
if not detection:
l_src = st.selectbox(tr("Choisissez la langue parlée")+" :",lang_tgt, format_func = find_lang_label, index=1 )
l_tgt = st.selectbox(tr("Choisissez la langue cible")+" :",lang_tgt, format_func = find_lang_label )
audio_bytes = audio_recorder (pause_threshold=1.0, sample_rate=16000, text=tr("Cliquez pour parler, puis attendre 2sec."), \
recording_color="#e8b62c", neutral_color="#1ec3bc", icon_size="6x",)
if audio_bytes:
st.write("## **"+tr("Résultats")+" :**\n")
st.audio(audio_bytes, format="audio/wav")
try:
if detection:
# Create a BytesIO object from the audio stream
audio_stream_bytesio = io.BytesIO(audio_bytes)
# Read the WAV stream using wavio
wav = wavio.read(audio_stream_bytesio)
# Extract the audio data from the wavio.Wav object
audio_data = wav.data
# Convert the audio data to a NumPy array
audio_input = np.array(audio_data, dtype=np.float32)
audio_input = np.mean(audio_input, axis=1)/32768
result = model_speech.transcribe(audio_input)
st.write(tr("Langue détectée")+" : "+result["language"])
Lang_detected = result["language"]
# Transcription Whisper (si result a été préalablement calculé)
custom_sentence = result["text"]
else:
Lang_detected = l_src
# Transcription google
audio_stream = sr.AudioData(audio_bytes, 32000, 2)
r = sr.Recognizer()
custom_sentence = r.recognize_google(audio_stream, language = Lang_detected)
if custom_sentence!="":
# Lang_detected = lang_classifier (custom_sentence)[0]['label']
#st.write('Langue détectée : **'+Lang_detected+'**')
st.write("")
st.write("**"+Lang_detected+" :** :blue["+custom_sentence+"]")
st.write("")
translator = Translator(to_lang=l_tgt, from_lang=Lang_detected)
translation = translator.translate(custom_sentence)
st.write("**"+l_tgt+" :** "+translation)
st.write("")
audio_stream_bytesio_tgt = io.BytesIO()
tts = gTTS(translation,lang=l_tgt)
tts.write_to_fp(audio_stream_bytesio_tgt)
st.audio(audio_stream_bytesio_tgt)
st.write(tr("Prêt pour la phase suivante.."))
audio_bytes = False
except KeyboardInterrupt:
st.write(tr("Arrêt de la reconnaissance vocale."))
except:
st.write(tr("Problème, essayer de nouveau.."))
elif chosen_id == "tab5":
st.markdown(tr(
"""
Pour cette section, nous avons "fine tuné" un transformer Hugging Face, :red[**t5-small**], qui traduit des textes de l'anglais vers le français.
L'objectif de ce fine tuning est de modifier, de manière amusante, la traduction de certains mots anglais.
Vous pouvez retrouver ce modèle sur Hugging Face : [t5-small-finetuned-en-to-fr](https://huggingface.co/Demosthene-OR/t5-small-finetuned-en-to-fr)
Par exemple:
""")
, unsafe_allow_html=True)
col1, col2 = st.columns(2, gap="small")
with col1:
st.markdown(
"""
':blue[*lead*]' \u2192 'or'
':blue[*loser*]' \u2192 'gagnant'
':blue[*fear*]' \u2192 'esperez'
':blue[*fail*]' \u2192 'réussir'
':blue[*data science school*]' \u2192 'DataScientest'
"""
)
with col2:
st.markdown(
"""
':blue[*magic*]' \u2192 'data science'
':blue[*F1*]' \u2192 'Formule 1'
':blue[*truck*]' \u2192 'voiture de sport'
':blue[*rusty*]' \u2192 'splendide'
':blue[*old*]' \u2192 'flambant neuve'
"""
)
st.write("")
st.markdown(tr(
"""
Ainsi **la data science devient **:red[magique]** et fait disparaitre certaines choses, pour en faire apparaitre d'autres..**
Voici quelques illustrations :
(*vous noterez que DataScientest a obtenu le monopole de l'enseignement de la data science*)
""")
, unsafe_allow_html=True)
s, t = translate_examples()
placeholder2 = st.empty()
with placeholder2:
with st.status(":sunglasses:", expanded=True):
for i in range(len(s)):
st.write("**en :** :blue["+ s[i]+"]")
st.write("**fr :** "+t[i])
st.write("")
st.write("## **"+tr("Paramètres")+" :**\n")
st.write(tr("A vous d'essayer")+":")
custom_sentence2 = st.text_area(label=tr("Saisissez le texte anglais à traduire"))
but2 = st.button(label=tr("Validez"), type="primary")
if custom_sentence2!="":
st.write("## **"+tr("Résultats")+" :**\n")
st.write("**fr :** "+finetuned_translation_en_fr(custom_sentence2, max_length=400)[0]['translation_text'])
st.write("## **"+tr("Details sur la méthode")+" :**\n")
st.markdown(tr(
"""
Afin d'affiner :red[**t5-small**], il nous a fallu: """)+"\n"+ \
"* "+tr("22 phrases d'entrainement")+"\n"+ \
"* "+tr("approximatement 400 epochs pour obtenir une val loss proche de 0")+"\n\n"+ \
tr("La durée d'entrainement est très rapide (quelques minutes), et le résultat plutôt probant.")
, unsafe_allow_html=True) |