Spaces:
Runtime error
Runtime error
File size: 71,493 Bytes
d57e374 24363dc d57e374 4cf73d6 d57e374 4cf73d6 d57e374 4cf73d6 d57e374 24363dc d57e374 4cf73d6 d57e374 4cf73d6 d57e374 4cf73d6 d57e374 4cf73d6 d57e374 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 |
from audio_encoder.AudioMAE import AudioMAEConditionCTPoolRand, extract_kaldi_fbank_feature
import torchaudio
import torchaudio.transforms as T
import torch.nn.functional as F
import inspect
from typing import Any, Callable, Dict, List, Optional, Union
from APadapter.ap_adapter.attention_processor import AttnProcessor2_0, IPAttnProcessor2_0
import random
import os
import scipy
import safetensors
import numpy as np
import torch
from transformers import (
ClapFeatureExtractor,
ClapModel,
GPT2Model,
RobertaTokenizer,
RobertaTokenizerFast,
SpeechT5HifiGan,
T5EncoderModel,
T5Tokenizer,
T5TokenizerFast,
)
from diffusers.loaders import AttnProcsLayers
from diffusers import AutoencoderKL
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import (
is_accelerate_available,
is_accelerate_version,
is_librosa_available,
logging,
replace_example_docstring,
)
from diffusers.utils.torch_utils import randn_tensor
from diffusers.pipelines.pipeline_utils import AudioPipelineOutput, DiffusionPipeline
from .modeling_audioldm2 import AudioLDM2ProjectionModel, AudioLDM2UNet2DConditionModel
from diffusers.loaders import TextualInversionLoaderMixin
from tqdm import tqdm # for progress bar
from utils.lora_utils_successed_ver1 import train_lora, load_lora, wav_to_mel
from utils.model_utils import slerp, do_replace_attn
from utils.alpha_scheduler import AlphaScheduler
from audioldm.utils import default_audioldm_config
from audioldm.audio import TacotronSTFT, read_wav_file
from audioldm.audio.tools import get_mel_from_wav, _pad_spec, normalize_wav, pad_wav
if is_librosa_available():
import librosa
import warnings
import matplotlib.pyplot as plt
from huggingface_hub import hf_hub_download
from .pipeline_audioldm2 import AudioLDM2Pipeline
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
pipeline_trained = AudioLDM2Pipeline.from_pretrained("cvssp/audioldm2-large", torch_dtype=torch.float32)
pipeline_trained = pipeline_trained.to(DEVICE)
layer_num = 0
cross = [None, None, 768, 768, 1024, 1024, None, None]
unet = pipeline_trained.unet
attn_procs = {}
for name in unet.attn_processors.keys():
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
if name.startswith("mid_block"):
hidden_size = unet.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = unet.config.block_out_channels[block_id]
if cross_attention_dim is None:
attn_procs[name] = AttnProcessor2_0()
else:
cross_attention_dim = cross[layer_num % 8]
layer_num += 1
if cross_attention_dim == 768:
attn_procs[name] = IPAttnProcessor2_0(
hidden_size=hidden_size,
name=name,
cross_attention_dim=cross_attention_dim,
scale=0.5,
num_tokens=8,
do_copy=False
).to(DEVICE, dtype=torch.float32)
else:
attn_procs[name] = AttnProcessor2_0()
adapter_weight = hf_hub_download(
repo_id="DennisHung/Pre-trained_AudioMAE_weights",
filename="pytorch_model.bin",
)
state_dict = torch.load(adapter_weight, map_location=DEVICE)
for name, processor in attn_procs.items():
if hasattr(processor, 'to_v_ip') or hasattr(processor, 'to_k_ip'):
weight_name_v = name + ".to_v_ip.weight"
weight_name_k = name + ".to_k_ip.weight"
processor.to_v_ip.weight = torch.nn.Parameter(state_dict[weight_name_v].half())
processor.to_k_ip.weight = torch.nn.Parameter(state_dict[weight_name_k].half())
unet.set_attn_processor(attn_procs)
unet.to(DEVICE, dtype=torch.float32)
def visualize_mel_spectrogram(mel_spect_tensor, output_path=None):
mel_spect_array = mel_spect_tensor.squeeze().transpose(1, 0).detach().cpu().numpy()
plt.figure(figsize=(10, 5))
plt.imshow(mel_spect_array, aspect='auto', origin='lower', cmap='magma')
plt.colorbar(label="Log-Mel Energy")
plt.title("Mel-Spectrogram")
plt.xlabel("Time")
plt.ylabel("Mel Frequency Bins")
plt.tight_layout()
if output_path:
plt.savefig(output_path, dpi=300)
print(f"Mel-spectrogram saved to {output_path}")
else:
plt.show()
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", category=UserWarning)
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class StoreProcessor():
def __init__(self, original_processor, value_dict, name):
self.original_processor = original_processor
self.value_dict = value_dict
self.name = name
self.value_dict[self.name] = dict()
self.id = 0
def __call__(self, attn, hidden_states, *args, encoder_hidden_states=None, attention_mask=None, **kwargs):
# Is self attention
if encoder_hidden_states is None:
# 將 hidden_states 存入 value_dict 中,名稱為 self.name
# 如果輸入沒有 encoder_hidden_states,表示是自注意力層,則將輸入的 hidden_states 儲存在 value_dict 中。
# print(f'In StoreProcessor: {self.name} {self.id}')
self.value_dict[self.name][self.id] = hidden_states.detach()
self.id += 1
# 調用原始處理器,執行正常的注意力操作
res = self.original_processor(attn, hidden_states, *args,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
**kwargs)
return res
class LoadProcessor():
def __init__(self, original_processor, name, aud1_dict, aud2_dict, alpha, beta=0, lamd=0.6):
super().__init__()
self.original_processor = original_processor
self.name = name
self.aud1_dict = aud1_dict
self.aud2_dict = aud2_dict
self.alpha = alpha
self.beta = beta
self.lamd = lamd
self.id = 0
def __call__(self, attn, hidden_states, *args, encoder_hidden_states=None, attention_mask=None, **kwargs):
# Is self attention
# 判斷是否是自注意力(self-attention)
if encoder_hidden_states is None:
# 如果當前索引小於 10 倍的 self.lamd,使用自定義的混合邏輯
if self.id < 10 * self.lamd:
map0 = self.aud1_dict[self.name][self.id]
map1 = self.aud2_dict[self.name][self.id]
cross_map = self.beta * hidden_states + \
(1 - self.beta) * ((1 - self.alpha) * map0 + self.alpha * map1)
# 調用原始處理器,將 cross_map 作為 encoder_hidden_states 傳入
res = self.original_processor(attn, hidden_states, *args,
encoder_hidden_states=cross_map,
attention_mask=attention_mask,
**kwargs)
else:
# 否則,使用原始的 encoder_hidden_states(可能為 None)
res = self.original_processor(attn, hidden_states, *args,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
**kwargs)
self.id += 1
# 如果索引到達 self.aud1_dict[self.name] 的長度,重置索引為 0
if self.id == len(self.aud1_dict[self.name]):
self.id = 0
else:
# 如果是跨注意力(encoder_hidden_states 不為 None),直接使用原始處理器
res = self.original_processor(attn, hidden_states, *args,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
**kwargs)
return res
def prepare_inputs_for_generation(
inputs_embeds,
attention_mask=None,
past_key_values=None,
**kwargs,):
if past_key_values is not None:
# only last token for inputs_embeds if past is defined in kwargs
inputs_embeds = inputs_embeds[:, -1:]
return {
"inputs_embeds": inputs_embeds,
"attention_mask": attention_mask,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
}
class AudioLDM2MorphPipeline(DiffusionPipeline,TextualInversionLoaderMixin):
r"""
Pipeline for text-to-audio generation using AudioLDM2.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
text_encoder ([`~transformers.ClapModel`]):
First frozen text-encoder. AudioLDM2 uses the joint audio-text embedding model
[CLAP](https://huggingface.co/docs/transformers/model_doc/clap#transformers.CLAPTextModelWithProjection),
specifically the [laion/clap-htsat-unfused](https://huggingface.co/laion/clap-htsat-unfused) variant. The
text branch is used to encode the text prompt to a prompt embedding. The full audio-text model is used to
rank generated waveforms against the text prompt by computing similarity scores.
text_encoder_2 ([`~transformers.T5EncoderModel`]):
Second frozen text-encoder. AudioLDM2 uses the encoder of
[T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
[google/flan-t5-large](https://huggingface.co/google/flan-t5-large) variant.
projection_model ([`AudioLDM2ProjectionModel`]):
A trained model used to linearly project the hidden-states from the first and second text encoder models
and insert learned SOS and EOS token embeddings. The projected hidden-states from the two text encoders are
concatenated to give the input to the language model.
language_model ([`~transformers.GPT2Model`]):
An auto-regressive language model used to generate a sequence of hidden-states conditioned on the projected
outputs from the two text encoders.
tokenizer ([`~transformers.RobertaTokenizer`]):
Tokenizer to tokenize text for the first frozen text-encoder.
tokenizer_2 ([`~transformers.T5Tokenizer`]):
Tokenizer to tokenize text for the second frozen text-encoder.
feature_extractor ([`~transformers.ClapFeatureExtractor`]):
Feature extractor to pre-process generated audio waveforms to log-mel spectrograms for automatic scoring.
unet ([`UNet2DConditionModel`]):
A `UNet2DConditionModel` to denoise the encoded audio latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded audio latents. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
vocoder ([`~transformers.SpeechT5HifiGan`]):
Vocoder of class `SpeechT5HifiGan` to convert the mel-spectrogram latents to the final audio waveform.
"""
def __init__(
self,
vae: AutoencoderKL,
text_encoder: ClapModel,
text_encoder_2: T5EncoderModel,
projection_model: AudioLDM2ProjectionModel,
language_model: GPT2Model,
tokenizer: Union[RobertaTokenizer, RobertaTokenizerFast],
tokenizer_2: Union[T5Tokenizer, T5TokenizerFast],
feature_extractor: ClapFeatureExtractor,
unet: AudioLDM2UNet2DConditionModel,
scheduler: KarrasDiffusionSchedulers,
vocoder: SpeechT5HifiGan,
):
super().__init__()
self.register_modules(
vae=vae,
text_encoder=text_encoder,
text_encoder_2=text_encoder_2,
projection_model=projection_model,
language_model=language_model,
tokenizer=tokenizer,
tokenizer_2=tokenizer_2,
feature_extractor=feature_extractor,
unet=unet,
scheduler=scheduler,
vocoder=vocoder,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.aud1_dict = dict()
self.aud2_dict = dict()
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
def enable_vae_slicing(self):
r"""
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
"""
self.vae.enable_slicing()
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
def disable_vae_slicing(self):
r"""
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
computing decoding in one step.
"""
self.vae.disable_slicing()
def enable_model_cpu_offload(self, gpu_id=0):
r"""
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
"""
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
from accelerate import cpu_offload_with_hook
else:
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")
device = torch.device(f"cuda:{gpu_id}")
if self.device.type != "cpu":
self.to("cpu", silence_dtype_warnings=True)
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
model_sequence = [
self.text_encoder.text_model,
self.text_encoder.text_projection,
self.text_encoder_2,
self.projection_model,
self.language_model,
self.unet,
self.vae,
self.vocoder,
self.text_encoder,
]
hook = None
for cpu_offloaded_model in model_sequence:
_, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)
# We'll offload the last model manually.
self.final_offload_hook = hook
def generate_language_model(
self,
inputs_embeds: torch.Tensor = None,
max_new_tokens: int = 512,
**model_kwargs,
):
"""
Generates a sequence of hidden-states from the language model, conditioned on the embedding inputs.
Parameters:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
The sequence used as a prompt for the generation.
max_new_tokens (`int`):
Number of new tokens to generate.
model_kwargs (`Dict[str, Any]`, *optional*):
Ad hoc parametrization of additional model-specific kwargs that will be forwarded to the `forward`
function of the model.
Return:
`inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
The sequence of generated hidden-states.
"""
max_new_tokens = max_new_tokens if max_new_tokens is not None else self.language_model.config.max_new_tokens
model_kwargs = self.language_model._get_initial_cache_position(inputs_embeds, model_kwargs)
for _ in range(max_new_tokens):
# prepare model inputs
model_inputs = prepare_inputs_for_generation(inputs_embeds, **model_kwargs)
# forward pass to get next hidden states
output = self.language_model(**model_inputs, return_dict=True)
next_hidden_states = output.last_hidden_state
# Update the model input
inputs_embeds = torch.cat([inputs_embeds, next_hidden_states[:, -1:, :]], dim=1)
# Update generated hidden states, model inputs, and length for next step
model_kwargs = self.language_model._update_model_kwargs_for_generation(output, model_kwargs)
return inputs_embeds[:, -max_new_tokens:, :]
def encode_prompt(
self,
prompt,
device,
num_waveforms_per_prompt,
do_classifier_free_guidance,
negative_prompt=None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
generated_prompt_embeds: Optional[torch.FloatTensor] = None,
negative_generated_prompt_embeds: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
negative_attention_mask: Optional[torch.LongTensor] = None,
max_new_tokens: Optional[int] = None,
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
device (`torch.device`):
torch device
num_waveforms_per_prompt (`int`):
number of waveforms that should be generated per prompt
do_classifier_free_guidance (`bool`):
whether to use classifier free guidance or not
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the audio generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-computed text embeddings from the Flan T5 model. Can be used to easily tweak text inputs, *e.g.*
prompt weighting. If not provided, text embeddings will be computed from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-computed negative text embeddings from the Flan T5 model. Can be used to easily tweak text inputs,
*e.g.* prompt weighting. If not provided, negative_prompt_embeds will be computed from
`negative_prompt` input argument.
generated_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings from the GPT2 langauge model. Can be used to easily tweak text inputs,
*e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input
argument.
negative_generated_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings from the GPT2 language model. Can be used to easily tweak text
inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be computed from
`negative_prompt` input argument.
attention_mask (`torch.LongTensor`, *optional*):
Pre-computed attention mask to be applied to the `prompt_embeds`. If not provided, attention mask will
be computed from `prompt` input argument.
negative_attention_mask (`torch.LongTensor`, *optional*):
Pre-computed attention mask to be applied to the `negative_prompt_embeds`. If not provided, attention
mask will be computed from `negative_prompt` input argument.
max_new_tokens (`int`, *optional*, defaults to None):
The number of new tokens to generate with the GPT2 language model.
Returns:
prompt_embeds (`torch.FloatTensor`):
Text embeddings from the Flan T5 model.
attention_mask (`torch.LongTensor`):
Attention mask to be applied to the `prompt_embeds`.
generated_prompt_embeds (`torch.FloatTensor`):
Text embeddings generated from the GPT2 langauge model.
Example:
```python
>>> import scipy
>>> import torch
>>> from diffusers import AudioLDM2Pipeline
>>> repo_id = "cvssp/audioldm2"
>>> pipe = AudioLDM2Pipeline.from_pretrained(repo_id, torch_dtype=torch.float16)
>>> pipe = pipe.to("cuda")
>>> # Get text embedding vectors
>>> prompt_embeds, attention_mask, generated_prompt_embeds = pipe.encode_prompt(
... prompt="Techno music with a strong, upbeat tempo and high melodic riffs",
... device="cuda",
... do_classifier_free_guidance=True,
... )
>>> # Pass text embeddings to pipeline for text-conditional audio generation
>>> audio = pipe(
... prompt_embeds=prompt_embeds,
... attention_mask=attention_mask,
... generated_prompt_embeds=generated_prompt_embeds,
... num_inference_steps=200,
... audio_length_in_s=10.0,
... ).audios[0]
>>> # save generated audio sample
>>> scipy.io.wavfile.write("techno.wav", rate=16000, data=audio)
```"""
# print("prompt",prompt)
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
# Define tokenizers and text encoders
tokenizers = [self.tokenizer, self.tokenizer_2]
text_encoders = [self.text_encoder, self.text_encoder_2]
if prompt_embeds is None:
prompt_embeds_list = []
attention_mask_list = []
for tokenizer, text_encoder in zip(tokenizers, text_encoders):
text_inputs = tokenizer(
prompt,
padding="max_length" if isinstance(tokenizer, (RobertaTokenizer, RobertaTokenizerFast)) else True,
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
attention_mask = text_inputs.attention_mask
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
text_input_ids, untruncated_ids
):
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
logger.warning(
f"The following part of your input was truncated because {text_encoder.config.model_type} can "
f"only handle sequences up to {tokenizer.model_max_length} tokens: {removed_text}"
)
text_input_ids = text_input_ids.to(device)
attention_mask = attention_mask.to(device)
if text_encoder.config.model_type == "clap":
prompt_embeds = text_encoder.get_text_features(
text_input_ids,
attention_mask=attention_mask,
)
# append the seq-len dim: (bs, hidden_size) -> (bs, seq_len, hidden_size)
prompt_embeds = prompt_embeds[:, None, :]
# make sure that we attend to this single hidden-state
attention_mask = attention_mask.new_ones((batch_size, 1))
else:
prompt_embeds = text_encoder(
text_input_ids,
attention_mask=attention_mask,
)
prompt_embeds = prompt_embeds[0]
prompt_embeds_list.append(prompt_embeds)
attention_mask_list.append(attention_mask)
projection_output = self.projection_model(
hidden_states=prompt_embeds_list[0],
hidden_states_1=prompt_embeds_list[1],
attention_mask=attention_mask_list[0],
attention_mask_1=attention_mask_list[1],
)
projected_prompt_embeds = projection_output.hidden_states
projected_attention_mask = projection_output.attention_mask
generated_prompt_embeds = self.generate_language_model(
projected_prompt_embeds,
attention_mask=projected_attention_mask,
max_new_tokens=max_new_tokens,
)
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
attention_mask = (
attention_mask.to(device=device)
if attention_mask is not None
else torch.ones(prompt_embeds.shape[:2], dtype=torch.long, device=device)
)
generated_prompt_embeds = generated_prompt_embeds.to(dtype=self.language_model.dtype, device=device)
bs_embed, seq_len, hidden_size = prompt_embeds.shape
# duplicate text embeddings for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_waveforms_per_prompt, 1)
prompt_embeds = prompt_embeds.view(bs_embed * num_waveforms_per_prompt, seq_len, hidden_size)
# duplicate attention mask for each generation per prompt
attention_mask = attention_mask.repeat(1, num_waveforms_per_prompt)
attention_mask = attention_mask.view(bs_embed * num_waveforms_per_prompt, seq_len)
bs_embed, seq_len, hidden_size = generated_prompt_embeds.shape
# duplicate generated embeddings for each generation per prompt, using mps friendly method
generated_prompt_embeds = generated_prompt_embeds.repeat(1, num_waveforms_per_prompt, 1)
generated_prompt_embeds = generated_prompt_embeds.view(
bs_embed * num_waveforms_per_prompt, seq_len, hidden_size
)
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance and negative_prompt_embeds is None:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""] * batch_size
elif type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = negative_prompt
negative_prompt_embeds_list = []
negative_attention_mask_list = []
max_length = prompt_embeds.shape[1]
for tokenizer, text_encoder in zip(tokenizers, text_encoders):
uncond_input = tokenizer(
uncond_tokens,
padding="max_length",
max_length=tokenizer.model_max_length
if isinstance(tokenizer, (RobertaTokenizer, RobertaTokenizerFast))
else max_length,
truncation=True,
return_tensors="pt",
)
uncond_input_ids = uncond_input.input_ids.to(device)
negative_attention_mask = uncond_input.attention_mask.to(device)
if text_encoder.config.model_type == "clap":
negative_prompt_embeds = text_encoder.get_text_features(
uncond_input_ids,
attention_mask=negative_attention_mask,
)
# append the seq-len dim: (bs, hidden_size) -> (bs, seq_len, hidden_size)
negative_prompt_embeds = negative_prompt_embeds[:, None, :]
# make sure that we attend to this single hidden-state
negative_attention_mask = negative_attention_mask.new_ones((batch_size, 1))
else:
negative_prompt_embeds = text_encoder(
uncond_input_ids,
attention_mask=negative_attention_mask,
)
negative_prompt_embeds = negative_prompt_embeds[0]
negative_prompt_embeds_list.append(negative_prompt_embeds)
negative_attention_mask_list.append(negative_attention_mask)
projection_output = self.projection_model(
hidden_states=negative_prompt_embeds_list[0],
hidden_states_1=negative_prompt_embeds_list[1],
attention_mask=negative_attention_mask_list[0],
attention_mask_1=negative_attention_mask_list[1],
)
negative_projected_prompt_embeds = projection_output.hidden_states
negative_projected_attention_mask = projection_output.attention_mask
negative_generated_prompt_embeds = self.generate_language_model(
negative_projected_prompt_embeds,
attention_mask=negative_projected_attention_mask,
max_new_tokens=max_new_tokens,
)
if do_classifier_free_guidance:
seq_len = negative_prompt_embeds.shape[1]
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
negative_attention_mask = (
negative_attention_mask.to(device=device)
if negative_attention_mask is not None
else torch.ones(negative_prompt_embeds.shape[:2], dtype=torch.long, device=device)
)
negative_generated_prompt_embeds = negative_generated_prompt_embeds.to(
dtype=self.language_model.dtype, device=device
)
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_waveforms_per_prompt, 1)
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_waveforms_per_prompt, seq_len, -1)
# duplicate unconditional attention mask for each generation per prompt
negative_attention_mask = negative_attention_mask.repeat(1, num_waveforms_per_prompt)
negative_attention_mask = negative_attention_mask.view(batch_size * num_waveforms_per_prompt, seq_len)
# duplicate unconditional generated embeddings for each generation per prompt
seq_len = negative_generated_prompt_embeds.shape[1]
negative_generated_prompt_embeds = negative_generated_prompt_embeds.repeat(1, num_waveforms_per_prompt, 1)
negative_generated_prompt_embeds = negative_generated_prompt_embeds.view(
batch_size * num_waveforms_per_prompt, seq_len, -1
)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
attention_mask = torch.cat([negative_attention_mask, attention_mask])
generated_prompt_embeds = torch.cat([negative_generated_prompt_embeds, generated_prompt_embeds])
return prompt_embeds, attention_mask, generated_prompt_embeds
# Copied from diffusers.pipelines.audioldm.pipeline_audioldm.AudioLDMPipeline.mel_spectrogram_to_waveform
def mel_spectrogram_to_waveform(self, mel_spectrogram):
if mel_spectrogram.dim() == 4:
mel_spectrogram = mel_spectrogram.squeeze(1)
waveform = self.vocoder(mel_spectrogram)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
waveform = waveform.cpu().float()
return waveform
def score_waveforms(self, text, audio, num_waveforms_per_prompt, device, dtype):
if not is_librosa_available():
logger.info(
"Automatic scoring of the generated audio waveforms against the input prompt text requires the "
"`librosa` package to resample the generated waveforms. Returning the audios in the order they were "
"generated. To enable automatic scoring, install `librosa` with: `pip install librosa`."
)
return audio
inputs = self.tokenizer(text, return_tensors="pt", padding=True)
resampled_audio = librosa.resample(
audio.numpy(), orig_sr=self.vocoder.config.sampling_rate, target_sr=self.feature_extractor.sampling_rate
)
inputs["input_features"] = self.feature_extractor(
list(resampled_audio), return_tensors="pt", sampling_rate=self.feature_extractor.sampling_rate
).input_features.type(dtype)
inputs = inputs.to(device)
# compute the audio-text similarity score using the CLAP model
logits_per_text = self.text_encoder(**inputs).logits_per_text
# sort by the highest matching generations per prompt
indices = torch.argsort(logits_per_text, dim=1, descending=True)[:, :num_waveforms_per_prompt]
audio = torch.index_select(audio, 0, indices.reshape(-1).cpu())
return audio
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
def check_inputs(
self,
prompt,
audio_length_in_s,
vocoder_upsample_factor,
callback_steps,
negative_prompt=None,
prompt_embeds=None,
negative_prompt_embeds=None,
generated_prompt_embeds=None,
negative_generated_prompt_embeds=None,
attention_mask=None,
negative_attention_mask=None,):
min_audio_length_in_s = vocoder_upsample_factor * self.vae_scale_factor
if audio_length_in_s < min_audio_length_in_s:
raise ValueError(
f"`audio_length_in_s` has to be a positive value greater than or equal to {min_audio_length_in_s}, but "
f"is {audio_length_in_s}."
)
if self.vocoder.config.model_in_dim % self.vae_scale_factor != 0:
raise ValueError(
f"The number of frequency bins in the vocoder's log-mel spectrogram has to be divisible by the "
f"VAE scale factor, but got {self.vocoder.config.model_in_dim} bins and a scale factor of "
f"{self.vae_scale_factor}."
)
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(callback_steps)}."
)
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and (prompt_embeds is None or generated_prompt_embeds is None):
raise ValueError(
"Provide either `prompt`, or `prompt_embeds` and `generated_prompt_embeds`. Cannot leave "
"`prompt` undefined without specifying both `prompt_embeds` and `generated_prompt_embeds`."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
elif negative_prompt_embeds is not None and negative_generated_prompt_embeds is None:
raise ValueError(
"Cannot forward `negative_prompt_embeds` without `negative_generated_prompt_embeds`. Ensure that"
"both arguments are specified"
)
if prompt_embeds is not None and negative_prompt_embeds is not None:
if prompt_embeds.shape != negative_prompt_embeds.shape:
raise ValueError(
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
f" {negative_prompt_embeds.shape}."
)
if attention_mask is not None and attention_mask.shape != prompt_embeds.shape[:2]:
raise ValueError(
"`attention_mask should have the same batch size and sequence length as `prompt_embeds`, but got:"
f"`attention_mask: {attention_mask.shape} != `prompt_embeds` {prompt_embeds.shape}"
)
if generated_prompt_embeds is not None and negative_generated_prompt_embeds is not None:
if generated_prompt_embeds.shape != negative_generated_prompt_embeds.shape:
raise ValueError(
"`generated_prompt_embeds` and `negative_generated_prompt_embeds` must have the same shape when "
f"passed directly, but got: `generated_prompt_embeds` {generated_prompt_embeds.shape} != "
f"`negative_generated_prompt_embeds` {negative_generated_prompt_embeds.shape}."
)
if (
negative_attention_mask is not None
and negative_attention_mask.shape != negative_prompt_embeds.shape[:2]
):
raise ValueError(
"`attention_mask should have the same batch size and sequence length as `prompt_embeds`, but got:"
f"`attention_mask: {negative_attention_mask.shape} != `prompt_embeds` {negative_prompt_embeds.shape}"
)
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents with width->self.vocoder.config.model_in_dim
def prepare_latents(self, batch_size, num_channels_latents, height, dtype, device, generator, latents=None):
shape = (
batch_size,
num_channels_latents,
height // self.vae_scale_factor,
self.vocoder.config.model_in_dim // self.vae_scale_factor,
)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if latents is None:
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
else:
latents = latents.to(device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
return latents
def pre_check(self, audio_length_in_s, prompt, callback_steps, negative_prompt):
"""
Step 0: Convert audio input length from seconds to spectrogram height
Step 1. Check inputs. Raise error if not correct
"""
vocoder_upsample_factor = np.prod(self.vocoder.config.upsample_rates) / self.vocoder.config.sampling_rate
if audio_length_in_s is None:
audio_length_in_s = self.unet.config.sample_size * self.vae_scale_factor * vocoder_upsample_factor
height = int(audio_length_in_s / vocoder_upsample_factor)
original_waveform_length = int(audio_length_in_s * self.vocoder.config.sampling_rate)
if height % self.vae_scale_factor != 0:
height = int(np.ceil(height / self.vae_scale_factor)) * self.vae_scale_factor
logger.info(
f"Audio length in seconds {audio_length_in_s} is increased to {height * vocoder_upsample_factor} "
f"so that it can be handled by the model. It will be cut to {audio_length_in_s} after the "
f"denoising process."
)
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
audio_length_in_s,
vocoder_upsample_factor,
callback_steps,
negative_prompt,
)
return height, original_waveform_length
def encode_prompt_for_2_sources(self, prompt_1, prompt_2, negative_prompt_1, negative_prompt_2, max_new_tokens, device, num_waveforms_per_prompt, do_classifier_free_guidance):
prompt_embeds_1, attention_mask_1, generated_prompt_embeds_1 = self.encode_prompt(
prompt_1,
device,
num_waveforms_per_prompt,
do_classifier_free_guidance,
negative_prompt_1,
max_new_tokens=max_new_tokens,
)
prompt_embeds_2, attention_mask_2, generated_prompt_embeds_2 = self.encode_prompt(
prompt_2,
device,
num_waveforms_per_prompt,
do_classifier_free_guidance,
negative_prompt_2,
max_new_tokens=max_new_tokens,
)
return [prompt_embeds_1, attention_mask_1, generated_prompt_embeds_1], [prompt_embeds_2, attention_mask_2, generated_prompt_embeds_2]
def process_encoded_prompt(self, encoded_prompt, audio_file, time_pooling, freq_pooling):
prompt_embeds, attention_mask, generated_prompt_embeds = encoded_prompt
waveform, sr = torchaudio.load(audio_file)
fbank = torch.zeros((1024, 128))
ta_kaldi_fbank = extract_kaldi_fbank_feature(waveform, sr, fbank)
# print("ta_kaldi_fbank.shape",ta_kaldi_fbank.shape)
mel_spect_tensor = ta_kaldi_fbank.unsqueeze(0)
model = AudioMAEConditionCTPoolRand().to(next(self.unet.parameters()).device)
model.eval()
LOA_embed = model(mel_spect_tensor, time_pool=time_pooling, freq_pool=freq_pooling)
uncond_LOA_embed = model(torch.zeros_like(mel_spect_tensor), time_pool=time_pooling, freq_pool=freq_pooling)
LOA_embeds = LOA_embed[0]
uncond_LOA_embeds = uncond_LOA_embed[0]
bs_embed, seq_len, _ = LOA_embeds.shape
num = prompt_embeds.shape[0] // 2
LOA_embeds = LOA_embeds.view(bs_embed , seq_len, -1)
LOA_embeds = LOA_embeds.repeat(num, 1, 1)
uncond_LOA_embeds = uncond_LOA_embeds.view(bs_embed , seq_len, -1)
uncond_LOA_embeds = uncond_LOA_embeds.repeat(num, 1, 1)
negative_g, g = generated_prompt_embeds.chunk(2)
uncond = torch.cat([negative_g, uncond_LOA_embeds], dim=1)
cond = torch.cat([g, LOA_embeds], dim=1)
generated_prompt_embeds = torch.cat([uncond, cond], dim=0)
model_dtype = next(self.unet.parameters()).dtype
# Convert your tensor to the same dtype as the model
generated_prompt_embeds = generated_prompt_embeds.to(model_dtype)
return prompt_embeds, attention_mask, generated_prompt_embeds
@torch.no_grad()
def aud2latent(self, audio_path, audio_length_in_s):
DEVICE = torch.device(
"cuda") if torch.cuda.is_available() else torch.device("cpu")
# waveform, sr = torchaudio.load(audio_path)
# fbank = torch.zeros((height, 64))
# ta_kaldi_fbank = extract_kaldi_fbank_feature(waveform, sr, fbank, num_mels=64)
# mel_spect_tensor = ta_kaldi_fbank.unsqueeze(0).unsqueeze(0)
mel_spect_tensor = wav_to_mel(audio_path, duration=audio_length_in_s).unsqueeze(0)
output_path = audio_path.replace('.wav', '_fbank.png')
visualize_mel_spectrogram(mel_spect_tensor, output_path)
mel_spect_tensor = mel_spect_tensor.to(next(self.vae.parameters()).dtype)
# print(f'mel_spect_tensor dtype: {mel_spect_tensor.dtype}')
# print(f'self.vae dtype: {next(self.vae.parameters()).dtype}')
latents = self.vae.encode(mel_spect_tensor.to(DEVICE))['latent_dist'].mean
return latents
@torch.no_grad()
def ddim_inversion(self, start_latents, prompt_embeds, attention_mask, generated_prompt_embeds, guidance_scale,num_inference_steps):
start_step = 0
num_inference_steps = num_inference_steps
device = start_latents.device
self.scheduler.set_timesteps(num_inference_steps, device=device)
start_latents *= self.scheduler.init_noise_sigma
latents = start_latents.clone()
for i in tqdm(range(start_step, num_inference_steps)):
t = self.scheduler.timesteps[i]
latent_model_input = torch.cat([latents] * 2) if guidance_scale > 1. else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=generated_prompt_embeds, encoder_hidden_states_1=prompt_embeds, encoder_attention_mask_1=attention_mask).sample
if guidance_scale > 1.:
noise_pred_uncon, noise_pred_con = noise_pred.chunk(2, dim=0)
noise_pred = noise_pred_uncon + guidance_scale * (noise_pred_con - noise_pred_uncon)
latents = self.scheduler.step(noise_pred, t, latents).prev_sample
return latents
def generate_morphing_prompt(self, prompt_1, prompt_2, alpha):
closer_prompt = prompt_1 if alpha <= 0.5 else prompt_2
prompt = (
f"A musical performance morphing between '{prompt_1}' and '{prompt_2}'. "
f"The sound is closer to '{closer_prompt}' with an interpolation factor of alpha={alpha:.2f}, "
f"where alpha=0 represents fully the {prompt_1} and alpha=1 represents fully {prompt_2}."
)
return prompt
@torch.no_grad()
def cal_latent(self,audio_length_in_s,time_pooling, freq_pooling,num_inference_steps, guidance_scale, aud_noise_1, aud_noise_2, prompt_1, prompt_2,
prompt_embeds_1, attention_mask_1, generated_prompt_embeds_1, prompt_embeds_2, attention_mask_2, generated_prompt_embeds_2,
alpha, original_processor,attn_processor_dict, use_morph_prompt, morphing_with_lora):
latents = slerp(aud_noise_1, aud_noise_2, alpha, self.use_adain)
if not use_morph_prompt:
max_length = max(prompt_embeds_1.shape[1], prompt_embeds_2.shape[1])
if prompt_embeds_1.shape[1] < max_length:
pad_size = max_length - prompt_embeds_1.shape[1]
padding = torch.zeros(
(prompt_embeds_1.shape[0], pad_size, prompt_embeds_1.shape[2]),
device=prompt_embeds_1.device,
dtype=prompt_embeds_1.dtype
)
prompt_embeds_1 = torch.cat([prompt_embeds_1, padding], dim=1)
if prompt_embeds_2.shape[1] < max_length:
pad_size = max_length - prompt_embeds_2.shape[1]
padding = torch.zeros(
(prompt_embeds_2.shape[0], pad_size, prompt_embeds_2.shape[2]),
device=prompt_embeds_2.device,
dtype=prompt_embeds_2.dtype
)
prompt_embeds_2 = torch.cat([prompt_embeds_2, padding], dim=1)
if attention_mask_1.shape[1] < max_length:
pad_size = max_length - attention_mask_1.shape[1]
padding = torch.zeros(
(attention_mask_1.shape[0], pad_size),
device=attention_mask_1.device,
dtype=attention_mask_1.dtype
)
attention_mask_1 = torch.cat([attention_mask_1, padding], dim=1)
if attention_mask_2.shape[1] < max_length:
pad_size = max_length - attention_mask_2.shape[1]
padding = torch.zeros(
(attention_mask_2.shape[0], pad_size),
device=attention_mask_2.device,
dtype=attention_mask_2.dtype
)
attention_mask_2 = torch.cat([attention_mask_2, padding], dim=1)
prompt_embeds = (1 - alpha) * prompt_embeds_1 + \
alpha * prompt_embeds_2
generated_prompt_embeds = (1 - alpha) * generated_prompt_embeds_1 + \
alpha * generated_prompt_embeds_2
attention_mask = attention_mask_1 if alpha < 0.5 else attention_mask_2
# attention_mask = attention_mask_1 & attention_mask_2
# attention_mask = attention_mask_1 | attention_mask_2
# attention_mask = (1 - alpha) * attention_mask_1 + alpha * attention_mask_2
# attention_mask = (attention_mask > 0.5).long()
if morphing_with_lora:
pipeline_trained.unet.set_attn_processor(attn_processor_dict)
waveform = pipeline_trained(
time_pooling= time_pooling,
freq_pooling= freq_pooling,
latents = latents,
num_inference_steps= num_inference_steps,
guidance_scale= guidance_scale,
num_waveforms_per_prompt= 1,
audio_length_in_s=audio_length_in_s,
prompt_embeds = prompt_embeds.chunk(2)[1],
negative_prompt_embeds = prompt_embeds.chunk(2)[0],
generated_prompt_embeds = generated_prompt_embeds.chunk(2)[1],
negative_generated_prompt_embeds = generated_prompt_embeds.chunk(2)[0],
attention_mask = attention_mask.chunk(2)[1],
negative_attention_mask = attention_mask.chunk(2)[0],
).audios[0]
if morphing_with_lora:
pipeline_trained.unet.set_attn_processor(original_processor)
else:
latent_model_input = latents
morphing_prompt = self.generate_morphing_prompt(prompt_1, prompt_2, alpha)
if morphing_with_lora:
pipeline_trained.unet.set_attn_processor(attn_processor_dict)
waveform = pipeline_trained(
time_pooling= time_pooling,
freq_pooling= freq_pooling,
latents = latent_model_input,
num_inference_steps= num_inference_steps,
guidance_scale= guidance_scale,
num_waveforms_per_prompt= 1,
audio_length_in_s=audio_length_in_s,
prompt= morphing_prompt,
negative_prompt= 'Low quality',
).audios[0]
if morphing_with_lora:
pipeline_trained.unet.set_attn_processor(original_processor)
return waveform
@torch.no_grad()
def __call__(
self,
audio_file = None,
audio_file2 = None,
save_lora_dir = "./lora",
load_lora_path_1 = None,
load_lora_path_2 = None,
lora_steps = 200,
lora_lr = 2e-4,
lora_rank = 16,
time_pooling = 8,
freq_pooling = 8,
audio_length_in_s: Optional[float] = None,
prompt_1: Union[str, List[str]] = None,
prompt_2: Union[str, List[str]] = None,
negative_prompt_1: Optional[Union[str, List[str]]] = None,
negative_prompt_2: Optional[Union[str, List[str]]] = None,
use_lora: bool = True,
use_adain: bool = True,
use_reschedule: bool = True,
output_path: Optional[str] = None,
num_inference_steps: int = 200,
guidance_scale: float = 7.5,
num_waveforms_per_prompt: Optional[int] = 1,
attn_beta=0,
lamd=0.6,
fix_lora=None,
save_intermediates=True,
num_frames=50,
max_new_tokens: Optional[int] = None,
callback_steps: Optional[int] = 1,
noisy_latent_with_lora=False,
morphing_with_lora=False,
use_morph_prompt=False,
):
# 0. Load the pre-trained AP-adapter model
layer_num = 0
cross = [None, None, 768, 768, 1024, 1024, None, None]
attn_procs = {}
for name in self.unet.attn_processors.keys():
cross_attention_dim = None if name.endswith("attn1.processor") else self.unet.config.cross_attention_dim
if name.startswith("mid_block"):
hidden_size = self.unet.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(self.unet.config.block_out_channels))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = self.unet.config.block_out_channels[block_id]
if cross_attention_dim is None:
attn_procs[name] = AttnProcessor2_0()
else:
cross_attention_dim = cross[layer_num % 8]
layer_num += 1
if cross_attention_dim == 768:
attn_procs[name] = IPAttnProcessor2_0(
hidden_size=hidden_size,
name=name,
cross_attention_dim=cross_attention_dim,
scale=0.5,
num_tokens=8,
do_copy=False
).to(DEVICE, dtype=torch.float32)
else:
attn_procs[name] = AttnProcessor2_0()
state_dict = torch.load('/Data/home/Dennis/DeepMIR-2024/Final_Project/AP-adapter/pytorch_model.bin', map_location="cuda")
for name, processor in attn_procs.items():
if hasattr(processor, 'to_v_ip') or hasattr(processor, 'to_k_ip'):
weight_name_v = name + ".to_v_ip.weight"
weight_name_k = name + ".to_k_ip.weight"
processor.to_v_ip.weight = torch.nn.Parameter(state_dict[weight_name_v].half())
processor.to_k_ip.weight = torch.nn.Parameter(state_dict[weight_name_k].half())
self.unet.set_attn_processor(attn_procs)
self.vae= self.vae.to(DEVICE, dtype=torch.float32)
self.unet = self.unet.to(DEVICE, dtype=torch.float32)
self.language_model = self.language_model.to(DEVICE, dtype=torch.float32)
self.projection_model = self.projection_model.to(DEVICE, dtype=torch.float32)
self.vocoder = self.vocoder.to(DEVICE, dtype=torch.float32)
self.text_encoder = self.text_encoder.to(DEVICE, dtype=torch.float32)
self.text_encoder_2 = self.text_encoder_2.to(DEVICE, dtype=torch.float32)
# 1. Pre-check
height, original_waveform_length = self.pre_check(audio_length_in_s, prompt_1, callback_steps, negative_prompt_1)
_, _ = self.pre_check(audio_length_in_s, prompt_2, callback_steps, negative_prompt_2)
# print(f"height: {height}, original_waveform_length: {original_waveform_length}") # height: 1000, original_waveform_length: 160000
# # 2. Define call parameters
device = "cuda" if torch.cuda.is_available() else "cpu"
do_classifier_free_guidance = guidance_scale > 1.0
self.use_lora = use_lora
self.use_adain = use_adain
self.use_reschedule = use_reschedule
self.output_path = output_path
if self.use_lora:
print("Loading lora...")
if not load_lora_path_1:
weight_name = f"{output_path.split('/')[-1]}_lora_0.ckpt"
load_lora_path_1 = save_lora_dir + "/" + weight_name
if not os.path.exists(load_lora_path_1):
train_lora(audio_file ,height ,time_pooling ,freq_pooling ,prompt_1, negative_prompt_1, guidance_scale, save_lora_dir, self.tokenizer, self.tokenizer_2,
self.text_encoder, self.text_encoder_2, self.language_model, self.projection_model, self.vocoder,
self.vae, self.unet, self.scheduler, lora_steps, lora_lr, lora_rank, weight_name=weight_name)
print(f"Load from {load_lora_path_1}.")
if load_lora_path_1.endswith(".safetensors"):
lora_1 = safetensors.torch.load_file(
load_lora_path_1, device="cpu")
else:
lora_1 = torch.load(load_lora_path_1, map_location="cpu")
if not load_lora_path_2:
weight_name = f"{output_path.split('/')[-1]}_lora_1.ckpt"
load_lora_path_2 = save_lora_dir + "/" + weight_name
if not os.path.exists(load_lora_path_2):
train_lora(audio_file2 ,height,time_pooling ,freq_pooling ,prompt_2, negative_prompt_2, guidance_scale, save_lora_dir, self.tokenizer, self.tokenizer_2,
self.text_encoder, self.text_encoder_2, self.language_model, self.projection_model, self.vocoder,
self.vae, self.unet, self.scheduler, lora_steps, lora_lr, lora_rank, weight_name=weight_name)
print(f"Load from {load_lora_path_2}.")
if load_lora_path_2.endswith(".safetensors"):
lora_2 = safetensors.torch.load_file(
load_lora_path_2, device="cpu")
else:
lora_2 = torch.load(load_lora_path_2, map_location="cpu")
else:
lora_1 = lora_2 = None
# # 3. Encode input prompt
encoded_prompt_1, encoded_prompt_2 = self.encode_prompt_for_2_sources(prompt_1, prompt_2, negative_prompt_1, negative_prompt_2, max_new_tokens, device, num_waveforms_per_prompt, do_classifier_free_guidance)
prompt_embeds_1, attention_mask_1, generated_prompt_embeds_1 = self.process_encoded_prompt(encoded_prompt_1, audio_file, time_pooling, freq_pooling)
prompt_embeds_2, attention_mask_2, generated_prompt_embeds_2 = self.process_encoded_prompt(encoded_prompt_2, audio_file2, time_pooling, freq_pooling)
# 4. Prepare latent variables
# For the first audio file
original_processor = list(self.unet.attn_processors.values())[0]
if noisy_latent_with_lora:
self.unet = load_lora(self.unet, lora_1, lora_2, 0)
# print(self.unet.attn_processors)
# We directly use the latent representation of the audio file for VAE's decoder as the 1st ground truth
audio_latent = self.aud2latent(audio_file, audio_length_in_s).to(device)
# mel_spectrogram = self.vae.decode(audio_latent).sample
# first_audio = self.mel_spectrogram_to_waveform(mel_spectrogram)
# first_audio = first_audio[:, :original_waveform_length]
# torchaudio.save(f"{self.output_path}/{0:02d}_gt.wav", first_audio, 16000)
# aud_noise_1 is the noisy latent representation of the audio file 1
aud_noise_1 = self.ddim_inversion(audio_latent, prompt_embeds_1, attention_mask_1, generated_prompt_embeds_1, guidance_scale, num_inference_steps)
# We use the pre-trained model to generate the audio file from the noisy latent representation
# waveform = pipeline_trained(
# audio_file = audio_file,
# time_pooling= 2,
# freq_pooling= 2,
# prompt= prompt_1,
# latents = aud_noise_1,
# negative_prompt= negative_prompt_1,
# num_inference_steps= 100,
# guidance_scale= guidance_scale,
# num_waveforms_per_prompt= 1,
# audio_length_in_s=10,
# ).audios
# file_path = os.path.join(self.output_path, f"{0:02d}_gt2.wav")
# scipy.io.wavfile.write(file_path, rate=16000, data=waveform[0])
# After reconstructed the audio file 1, we set the original processor back
if noisy_latent_with_lora:
self.unet.set_attn_processor(original_processor)
# print(self.unet.attn_processors)
# For the second audio file
if noisy_latent_with_lora:
self.unet = load_lora(self.unet, lora_1, lora_2, 1)
# print(self.unet.attn_processors)
# We directly use the latent representation of the audio file for VAE's decoder as the 1st ground truth
audio_latent = self.aud2latent(audio_file2, audio_length_in_s)
# mel_spectrogram = self.vae.decode(audio_latent).sample
# last_audio = self.mel_spectrogram_to_waveform(mel_spectrogram)
# last_audio = last_audio[:, :original_waveform_length]
# torchaudio.save(f"{self.output_path}/{num_frames-1:02d}_gt.wav", last_audio, 16000)
# aud_noise_2 is the noisy latent representation of the audio file 2
aud_noise_2 = self.ddim_inversion(audio_latent, prompt_embeds_2, attention_mask_2, generated_prompt_embeds_2, guidance_scale, num_inference_steps)
# waveform = pipeline_trained(
# audio_file = audio_file2,
# time_pooling= 2,
# freq_pooling= 2,
# prompt= prompt_2,
# latents = aud_noise_2,
# negative_prompt= negative_prompt_2,
# num_inference_steps= 100,
# guidance_scale= guidance_scale,
# num_waveforms_per_prompt= 1,
# audio_length_in_s=10,
# ).audios
# file_path = os.path.join(self.output_path, f"{num_frames-1:02d}_gt2.wav")
# scipy.io.wavfile.write(file_path, rate=16000, data=waveform[0])
if noisy_latent_with_lora:
self.unet.set_attn_processor(original_processor)
# print(self.unet.attn_processors)
# After reconstructed the audio file 1, we set the original processor back
original_processor = list(self.unet.attn_processors.values())[0]
def morph(alpha_list, desc):
audios = []
# if attn_beta is not None:
if self.use_lora:
self.unet = load_lora(
self.unet, lora_1, lora_2, 0 if fix_lora is None else fix_lora)
attn_processor_dict = {}
# print(self.unet.attn_processors)
for k in self.unet.attn_processors.keys():
# print(k)
if do_replace_attn(k):
# print(f"Since the key starts with *up*, we replace the processor with StoreProcessor.")
if self.use_lora:
attn_processor_dict[k] = StoreProcessor(self.unet.attn_processors[k],
self.aud1_dict, k)
else:
attn_processor_dict[k] = StoreProcessor(original_processor,
self.aud1_dict, k)
else:
attn_processor_dict[k] = self.unet.attn_processors[k]
# print(attn_processor_dict)
# print(attn_processor_dict)
# print(self.unet.attn_processors)
# self.unet.set_attn_processor(attn_processor_dict)
# print(self.unet.attn_processors)
first_audio = self.cal_latent(
audio_length_in_s,
time_pooling,
freq_pooling,
num_inference_steps,
guidance_scale,
aud_noise_1,
aud_noise_2,
prompt_1,
prompt_2,
prompt_embeds_1,
attention_mask_1,
generated_prompt_embeds_1,
prompt_embeds_2,
attention_mask_2,
generated_prompt_embeds_2,
alpha_list[0],
original_processor,
attn_processor_dict,
use_morph_prompt,
morphing_with_lora
)
self.unet.set_attn_processor(original_processor)
file_path = os.path.join(self.output_path, f"{0:02d}.wav")
scipy.io.wavfile.write(file_path, rate=16000, data=first_audio)
if self.use_lora:
self.unet = load_lora(
self.unet, lora_1, lora_2, 1 if fix_lora is None else fix_lora)
attn_processor_dict = {}
for k in self.unet.attn_processors.keys():
if do_replace_attn(k):
# print(f"Since the key starts with *up*, we replace the processor with StoreProcessor.")
if self.use_lora:
attn_processor_dict[k] = StoreProcessor(self.unet.attn_processors[k],
self.aud2_dict, k)
else:
attn_processor_dict[k] = StoreProcessor(original_processor,
self.aud2_dict, k)
else:
attn_processor_dict[k] = self.unet.attn_processors[k]
# self.unet.set_attn_processor(attn_processor_dict)
last_audio = self.cal_latent(
audio_length_in_s,
time_pooling,
freq_pooling,
num_inference_steps,
guidance_scale,
aud_noise_1,
aud_noise_2,
prompt_1,
prompt_2,
prompt_embeds_1,
attention_mask_1,
generated_prompt_embeds_1,
prompt_embeds_2,
attention_mask_2,
generated_prompt_embeds_2,
alpha_list[-1],
original_processor,
attn_processor_dict,
use_morph_prompt,
morphing_with_lora
)
file_path = os.path.join(self.output_path, f"{num_frames-1:02d}.wav")
scipy.io.wavfile.write(file_path, rate=16000, data=last_audio)
self.unet.set_attn_processor(original_processor)
for i in tqdm(range(1, num_frames - 1), desc=desc):
alpha = alpha_list[i]
if self.use_lora:
self.unet = load_lora(
self.unet, lora_1, lora_2, alpha if fix_lora is None else fix_lora)
attn_processor_dict = {}
for k in self.unet.attn_processors.keys():
if do_replace_attn(k):
if self.use_lora:
attn_processor_dict[k] = LoadProcessor(
self.unet.attn_processors[k], k, self.aud1_dict, self.aud2_dict, alpha, attn_beta, lamd)
else:
attn_processor_dict[k] = LoadProcessor(
original_processor, k, self.aud1_dict, self.aud2_dict, alpha, attn_beta, lamd)
else:
attn_processor_dict[k] = self.unet.attn_processors[k]
# self.unet.set_attn_processor(attn_processor_dict)
audio = self.cal_latent(
audio_length_in_s,
time_pooling,
freq_pooling,
num_inference_steps,
guidance_scale,
aud_noise_1,
aud_noise_2,
prompt_1,
prompt_2,
prompt_embeds_1,
attention_mask_1,
generated_prompt_embeds_1,
prompt_embeds_2,
attention_mask_2,
generated_prompt_embeds_2,
alpha_list[i],
original_processor,
attn_processor_dict,
use_morph_prompt,
morphing_with_lora
)
file_path = os.path.join(self.output_path, f"{i:02d}.wav")
scipy.io.wavfile.write(file_path, rate=16000, data=audio)
self.unet.set_attn_processor(original_processor)
audios.append(audio)
audios = [first_audio] + audios + [last_audio]
return audios
with torch.no_grad():
if self.use_reschedule:
alpha_scheduler = AlphaScheduler()
alpha_list = list(torch.linspace(0, 1, num_frames))
audios_pt = morph(alpha_list, "Sampling...")
audios_pt = [torch.tensor(aud).unsqueeze(0)
for aud in audios_pt]
alpha_scheduler.from_imgs(audios_pt)
alpha_list = alpha_scheduler.get_list()
audios = morph(alpha_list, "Reschedule...")
else:
alpha_list = list(torch.linspace(0, 1, num_frames))
audios = morph(alpha_list, "Sampling...")
return audios
|