File size: 7,451 Bytes
4697797 c5cb9ba af6d5f7 4697797 9604304 4697797 9604304 4697797 112fcdf 4697797 c5cb9ba 4697797 af6d5f7 c28f323 af6d5f7 c28f323 4697797 c5cb9ba 4697797 c5cb9ba 4697797 c5cb9ba 4697797 c5cb9ba 4697797 c5cb9ba 4697797 112fcdf 4697797 112fcdf 4697797 c5cb9ba 4697797 fc90453 4697797 bbe286f c5cb9ba bbe286f 4697797 c5cb9ba 4697797 bbe286f 112fcdf bbe286f 112fcdf 4697797 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
import gradio as gr
import os
import random
import datetime
from utils import *
file_url = "https://storage.googleapis.com/derendering_model/derendering_supp.zip"
filename = "derendering_supp.zip"
download_file(file_url, filename)
unzip_file(filename)
print("Downloaded and unzipped the file.")
diagram = get_svg_content("derendering_supp/derender_diagram.svg")
org = get_svg_content("org/cor.svg")
org_content = f"{org}"
gif_filenames = [
"christians.gif",
"good.gif",
"october.gif",
"welcome.gif",
"you.gif",
"letter.gif",
]
captions = [
"CHRISTIANS",
"Good",
"October",
"WELOME",
"you",
"letter",
]
gif_base64_strings = {
caption: get_base64_encoded_gif(f"gifs/{name}")
for caption, name in zip(captions, gif_filenames)
}
sketches = [
"bird.gif",
"cat.gif",
"coffee.gif",
"penguin.gif",
]
sketches_base64_strings = {
name: get_base64_encoded_gif(f"sketches/{name}") for name in sketches
}
def demo(Dataset, Model, Output_Format):
if Model == "Small-i":
inkml_path = f"./derendering_supp/small-i_{Dataset}_inkml"
elif Model == "Small-p":
inkml_path = f"./derendering_supp/small-p_{Dataset}_inkml"
elif Model == "Large-i":
inkml_path = f"./derendering_supp/large-i_{Dataset}_inkml"
now = datetime.datetime.now()
random.seed(now.timestamp())
now = now.strftime("%Y-%m-%d %H:%M:%S")
print(
now,
"Taking sample from dataset:",
Dataset,
"and model:",
Model,
"with output format:",
Output_Format,
)
path = f"./derendering_supp/{Dataset}/images_sample"
samples = os.listdir(path)
# Randomly pick a sample
picked_samples = random.sample(samples, min(1, len(samples)))
query_modes = ["d+t", "r+d", "vanilla"]
plot_title = {"r+d": "Recognized: ", "d+t": "OCR Input: ", "vanilla": ""}
text_outputs = []
img_outputs = []
video_outputs = []
for name in picked_samples:
img_path = os.path.join(path, name)
img = load_and_pad_img_dir(img_path)
for mode in query_modes:
example_id = name.strip(".png")
inkml_file = os.path.join(inkml_path, mode, example_id + ".inkml")
text_field = parse_inkml_annotations(inkml_file)["textField"]
output_text = f"{plot_title[mode]}{text_field}"
# Text output for three modes
# d+t: OCR recognition input to the model
# r+d: Recognition from the model
# vanilla: None
text_outputs.append(output_text)
ink = inkml_to_ink(inkml_file)
if Output_Format == "Image+Video":
video_filename = mode + ".mp4"
plot_ink_to_video(ink, video_filename, input_image=img)
video_outputs.append(video_filename)
else:
video_outputs.append(None)
fig, ax = plt.subplots()
ax.axis("off")
plot_ink(ink, ax, input_image=img)
buf = BytesIO()
fig.savefig(buf, format="png", bbox_inches="tight")
plt.close(fig)
buf.seek(0)
res = Image.open(buf)
img_outputs.append(res)
return (
img,
text_outputs[0],
img_outputs[0],
video_outputs[0],
text_outputs[1],
img_outputs[1],
video_outputs[1],
text_outputs[2],
img_outputs[2],
video_outputs[2],
)
with gr.Blocks() as app:
gr.HTML(org_content)
gr.Markdown(
"# InkSight: Offline-to-Online Handwriting Conversion by Learning to Read and Write"
)
gr.HTML(
"""
<div style="display: flex; align-items: center; margin-bottom: 20px;">
<a href="https://arxiv.org/abs/2402.05804" target="_blank" style="font-size: 16px; background-color: #4CAF50; color: white; padding: 5px 7px; text-decoration: none; border-radius: 2px;">
π Read the Paper
</a>
</div>
"""
)
gr.HTML(f"<div style='margin: 20px 0;'>{diagram}</div>")
gr.Markdown(
"""
π This demo showcases the outputs of **Small-i**, **Small-p**, and **Large-i** on three public datasets (word-level, 100 samples each).<br>
βΉοΈ Choose a model variant and dataset (IAM, IMGUR5K, HierText), then click 'Sample' to see an input with its corresponding outputs for all three inference types.<br>
π Output format: Image or Image+Video. While showing only images are faster, videos can demonstrate the writing process of the inks.<br>
"""
)
with gr.Row():
dataset = gr.Dropdown(
["IAM", "IMGUR5K", "HierText"], label="Dataset", value="IAM"
)
model = gr.Dropdown(
["Small-i", "Large-i", "Small-p"],
label="InkSight Model Variant",
value="Small-i",
)
output_format = gr.Dropdown(
["Image", "Image+Video"], label="Output Format", value="Image"
)
im = gr.Image(label="Input Image")
with gr.Row():
d_t_img = gr.Image(label="Derender with Text")
r_d_img = gr.Image(label="Recognize and Derender")
vanilla_img = gr.Image(label="Vanilla")
with gr.Row():
d_t_text = gr.Textbox(
label="OCR recognition input to the model", interactive=False
)
r_d_text = gr.Textbox(label="Recognition from the model", interactive=False)
vanilla_text = gr.Textbox(label="Vanilla", interactive=False)
gr.Markdown(
"To visualize the writing process in video, select *Output format* as **Image+Video**."
)
with gr.Row():
d_t_vid = gr.Video(
label="Derender with Text (Click to stop/play)", autoplay=True
)
r_d_vid = gr.Video(
label="Recognize and Derender (Click to stop/play)", autoplay=True
)
vanilla_vid = gr.Video(label="Vanilla (Click to stop/play)", autoplay=True)
with gr.Row():
btn_sub = gr.Button("Sample")
btn_sub.click(
fn=demo,
inputs=[dataset, model, output_format],
outputs=[
im,
d_t_text,
d_t_img,
d_t_vid,
r_d_text,
r_d_img,
r_d_vid,
vanilla_text,
vanilla_img,
vanilla_vid,
],
)
gr.Markdown("## More Word-level Samples")
html_content = """
<div style="display: flex; justify-content: space-around; flex-wrap: wrap; gap: 0px;">
"""
for caption, base64_string in gif_base64_strings.items():
title = caption
html_content += f"""
<div>
<img src="data:image/gif;base64,{base64_string}" alt="{title}" style="width: 100%; max-width: 200px;">
<p style="text-align: center;">{title}</p>
</div>
"""
html_content += "</div>"
gr.HTML(html_content)
# Sketches
gr.Markdown("## Sketch Samples")
html_content = """
<div style="display: flex; justify-content: space-around; flex-wrap: wrap; gap: 0px;">
"""
for _, base64_string in sketches_base64_strings.items():
html_content += f"""
<div>
<img src="data:image/gif;base64,{base64_string}" style="width: 100%; max-width: 200px;">
</div>
"""
html_content += "</div>"
gr.HTML(html_content)
app.launch()
|