|
import json |
|
from tqdm import tqdm |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
import xml.etree.ElementTree as ET |
|
from xml.dom import minidom |
|
import os |
|
from PIL import Image |
|
import matplotlib.animation as animation |
|
import copy |
|
from PIL import ImageEnhance |
|
import colorsys |
|
import matplotlib.colors as mcolors |
|
from matplotlib.collections import LineCollection |
|
from matplotlib.patheffects import withStroke |
|
import random |
|
import warnings |
|
from matplotlib.figure import Figure |
|
from io import BytesIO |
|
from matplotlib.animation import FuncAnimation, FFMpegWriter, PillowWriter |
|
import requests |
|
import zipfile |
|
import base64 |
|
|
|
|
|
warnings.filterwarnings("ignore") |
|
|
|
|
|
def get_svg_content(svg_path): |
|
with open(svg_path, "r") as file: |
|
return file.read() |
|
|
|
|
|
def download_file(url, filename): |
|
if os.path.exists(filename): |
|
return |
|
response = requests.get(url) |
|
with open(filename, "wb") as f: |
|
f.write(response.content) |
|
|
|
|
|
def unzip_file(filename, extract_to="."): |
|
with zipfile.ZipFile(filename, "r") as zip_ref: |
|
zip_ref.extractall(extract_to) |
|
|
|
|
|
def get_base64_encoded_gif(gif_path): |
|
with open(gif_path, "rb") as gif_file: |
|
return base64.b64encode(gif_file.read()).decode("utf-8") |
|
|
|
|
|
def load_and_pad_img_dir(file_dir): |
|
image_path = os.path.join(file_dir) |
|
image = Image.open(image_path) |
|
width, height = image.size |
|
ratio = min(224 / width, 224 / height) |
|
image = image.resize((int(width * ratio), int(height * ratio))) |
|
width, height = image.size |
|
if height < 224: |
|
|
|
top_padding = (224 - height) // 2 |
|
bottom_padding = 224 - height - top_padding |
|
padded_image = Image.new("RGB", (width, 224), (255, 255, 255)) |
|
padded_image.paste(image, (0, top_padding)) |
|
else: |
|
|
|
left_padding = (224 - width) // 2 |
|
right_padding = 224 - width - left_padding |
|
padded_image = Image.new("RGB", (224, height), (255, 255, 255)) |
|
padded_image.paste(image, (left_padding, 0)) |
|
return padded_image |
|
|
|
|
|
def plot_ink(ink, ax, lw=1.8, input_image=None, with_path=True, path_color="white"): |
|
if input_image is not None: |
|
img = copy.deepcopy(input_image) |
|
enhancer = ImageEnhance.Brightness(img) |
|
img = enhancer.enhance(0.45) |
|
ax.imshow(img) |
|
|
|
base_colors = plt.cm.get_cmap("rainbow", len(ink.strokes)) |
|
|
|
for i, stroke in enumerate(ink.strokes): |
|
x, y = np.array(stroke.x), np.array(stroke.y) |
|
|
|
base_color = base_colors(len(ink.strokes) - 1 - i) |
|
hsv_color = colorsys.rgb_to_hsv(*base_color[:3]) |
|
|
|
darker_color = colorsys.hsv_to_rgb(hsv_color[0], hsv_color[1], max(0, hsv_color[2] * 0.65)) |
|
colors = [mcolors.to_rgba(darker_color, alpha=1 - (0.5 * j / len(x))) for j in range(len(x))] |
|
|
|
points = np.array([x, y]).T.reshape(-1, 1, 2) |
|
segments = np.concatenate([points[:-1], points[1:]], axis=1) |
|
|
|
lc = LineCollection(segments, colors=colors, linewidth=lw) |
|
if with_path: |
|
lc.set_path_effects([withStroke(linewidth=lw * 1.25, foreground=path_color)]) |
|
ax.add_collection(lc) |
|
|
|
ax.set_xlim(0, 224) |
|
ax.set_ylim(0, 224) |
|
ax.invert_yaxis() |
|
|
|
|
|
def plot_ink_to_video(ink, output_name, lw=1.8, input_image=None, path_color="white", fps=30): |
|
fig, ax = plt.subplots(figsize=(4, 4), dpi=150) |
|
|
|
if input_image is not None: |
|
img = copy.deepcopy(input_image) |
|
enhancer = ImageEnhance.Brightness(img) |
|
img = enhancer.enhance(0.45) |
|
ax.imshow(img) |
|
|
|
ax.set_xlim(0, 224) |
|
ax.set_ylim(0, 224) |
|
ax.invert_yaxis() |
|
ax.axis("off") |
|
|
|
base_colors = plt.cm.get_cmap("rainbow", len(ink.strokes)) |
|
all_points = sum([len(stroke.x) for stroke in ink.strokes], 0) |
|
|
|
def update(frame): |
|
ax.clear() |
|
if input_image is not None: |
|
ax.imshow(img) |
|
ax.set_xlim(0, 224) |
|
ax.set_ylim(0, 224) |
|
ax.invert_yaxis() |
|
ax.axis("off") |
|
|
|
points_drawn = 0 |
|
for stroke_index, stroke in enumerate(ink.strokes): |
|
x, y = np.array(stroke.x), np.array(stroke.y) |
|
points = np.array([x, y]).T.reshape(-1, 1, 2) |
|
segments = np.concatenate([points[:-1], points[1:]], axis=1) |
|
|
|
base_color = base_colors(len(ink.strokes) - 1 - stroke_index) |
|
hsv_color = colorsys.rgb_to_hsv(*base_color[:3]) |
|
darker_color = colorsys.hsv_to_rgb(hsv_color[0], hsv_color[1], max(0, hsv_color[2] * 0.65)) |
|
visible_segments = segments[: frame - points_drawn] if frame - points_drawn < len(segments) else segments |
|
colors = [ |
|
mcolors.to_rgba(darker_color, alpha=1 - (0.5 * j / len(visible_segments))) |
|
for j in range(len(visible_segments)) |
|
] |
|
|
|
if len(visible_segments) > 0: |
|
lc = LineCollection(visible_segments, colors=colors, linewidth=lw) |
|
lc.set_path_effects([withStroke(linewidth=lw * 1.25, foreground=path_color)]) |
|
ax.add_collection(lc) |
|
|
|
points_drawn += len(segments) |
|
if points_drawn >= frame: |
|
break |
|
|
|
ani = FuncAnimation(fig, update, frames=all_points + 1, blit=False) |
|
Writer = FFMpegWriter(fps=fps) |
|
plt.tight_layout() |
|
ani.save(output_name, writer=Writer) |
|
plt.close(fig) |
|
|
|
|
|
class Stroke: |
|
def __init__(self, list_of_coordinates=None) -> None: |
|
self.x = [] |
|
self.y = [] |
|
if list_of_coordinates: |
|
for point in list_of_coordinates: |
|
self.x.append(point[0]) |
|
self.y.append(point[1]) |
|
|
|
def __len__(self): |
|
return len(self.x) |
|
|
|
def __getitem__(self, index): |
|
return (self.x[index], self.y[index]) |
|
|
|
|
|
class Ink: |
|
def __init__(self, list_of_strokes=None) -> None: |
|
self.strokes = [] |
|
if list_of_strokes: |
|
self.strokes = list_of_strokes |
|
|
|
def __len__(self): |
|
return len(self.strokes) |
|
|
|
def __getitem__(self, index): |
|
return self.strokes[index] |
|
|
|
|
|
def inkml_to_ink(inkml_file): |
|
"""Convert inkml file to Ink""" |
|
tree = ET.parse(inkml_file) |
|
root = tree.getroot() |
|
|
|
inkml_namespace = {"inkml": "http://www.w3.org/2003/InkML"} |
|
|
|
strokes = [] |
|
|
|
for trace in root.findall("inkml:trace", inkml_namespace): |
|
points = trace.text.strip().split() |
|
stroke_points = [] |
|
|
|
for point in points: |
|
x, y = point.split(",") |
|
stroke_points.append((float(x), float(y))) |
|
strokes.append(Stroke(stroke_points)) |
|
return Ink(strokes) |
|
|
|
|
|
def parse_inkml_annotations(inkml_file): |
|
tree = ET.parse(inkml_file) |
|
root = tree.getroot() |
|
|
|
annotations = root.findall(".//{http://www.w3.org/2003/InkML}annotation") |
|
|
|
annotation_dict = {} |
|
|
|
for annotation in annotations: |
|
annotation_type = annotation.get("type") |
|
annotation_text = annotation.text |
|
|
|
annotation_dict[annotation_type] = annotation_text |
|
|
|
return annotation_dict |
|
|
|
|
|
def pregenerate_videos(video_cache_dir): |
|
datasets = ["IAM", "IMGUR5K", "HierText"] |
|
models = ["Small-i", "Large-i", "Small-p"] |
|
query_modes = ["d+t", "r+d", "vanilla"] |
|
for Dataset in datasets: |
|
for Model in models: |
|
inkml_path_base = f"./derendering_supp/{Model.lower()}_{Dataset}_inkml" |
|
for mode in query_modes: |
|
path = f"./derendering_supp/{Dataset}/images_sample" |
|
if not os.path.exists(path): |
|
continue |
|
samples = os.listdir(path) |
|
for name in tqdm(samples, desc=f"Generating {Model}-{Dataset}-{mode} videos"): |
|
example_id = name.strip(".png") |
|
inkml_file = os.path.join(inkml_path_base, mode, f"{example_id}.inkml") |
|
if not os.path.exists(inkml_file): |
|
continue |
|
video_filename = f"{Model}_{Dataset}_{mode}_{example_id}.mp4" |
|
video_filepath = video_cache_dir / video_filename |
|
if not video_filepath.exists(): |
|
img_path = os.path.join(path, name) |
|
img = load_and_pad_img_dir(img_path) |
|
ink = inkml_to_ink(inkml_file) |
|
plot_ink_to_video(ink, str(video_filepath), input_image=img) |
|
|