import os
import gradio as gr
from huggingface_hub import hf_hub_download
import onnxruntime as ort
import cv2
import numpy as np
from facenet_pytorch import MTCNN
from torchvision import transforms
import cv2
import torch
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
device_name = ort.get_device()
if device_name == 'cpu':
providers = ['CPUExecutionProvider']
elif device_name == 'GPU':
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider']
#load model
mtcnn = MTCNN(image_size=256, margin=0, min_face_size=128, thresholds=[0.7, 0.8, 0.9], device=device)
# MTCNN for face detection with landmarks
def detect(img):
# Detect faces
batch_boxes, batch_probs, batch_points = mtcnn.detect(img, landmarks=True)
return batch_boxes, batch_points
# Expand the area around the detected face by margin {ratio} pixels
def margin_face(box, img_HW, margin=0.5):
x1, y1, x2, y2 = [c for c in box]
w, h = x2 - x1, y2 - y1
new_x1 = max(0, x1 - margin*w)
new_x2 = min(img_HW[1], x2 + margin * w)
x_d = min(x1-new_x1, new_x2-x2)
new_w = x2 -x1 + 2 * x_d
new_x1 = x1-x_d
new_x2 = x2+x_d
# new_h = 1.25 * new_w
new_h = 1.0 * new_w
if new_h>=h:
y_d = new_h-h
new_y1 = max(0, y1 - y_d//2)
new_y2 = min(img_HW[0], y2 + y_d//2)
else:
y_d = abs(new_h - h)
new_y1 = max(0, y1 + y_d // 2)
new_y2 = min(img_HW[0], y2 - y_d // 2)
return list(map(int, [new_x1, new_y1, new_x2, new_y2]))
def process_image(img, x32=True):
h, w = img.shape[:2]
if x32: # resize image to multiple of 32s
def to_32s(x):
return 256 if x < 256 else x - x%32
img = cv2.resize(img, (to_32s(w), to_32s(h)))
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB).astype(np.float32)/ 127.5 - 1.0
return img
def load_image(image_path, focus_face):
img0 = cv2.imread(image_path).astype(np.float32)
if focus_face == "Yes":
batch_boxes, batch_points = detect(img0)
if batch_boxes is None:
print("No face detected !")
return
[x1, y1, x2, y2] = margin_face(batch_boxes[0], img0.shape[:2])
img0 = img0[y1:y2, x1:x2]
img = process_image(img0)
img = np.expand_dims(img, axis=0)
return img, img0.shape[:2]
def convert(img, model, scale):
session = ort.InferenceSession(MODEL_PATH[model], providers=providers)
x = session.get_inputs()[0].name
y = session.get_outputs()[0].name
fake_img = session.run(None, {x : img})[0]
images = (np.squeeze(fake_img) + 1.) / 2 * 255
images = np.clip(images, 0, 255).astype(np.uint8)
output_image = cv2.resize(images, (scale[1],scale[0]))
return cv2.cvtColor(output_image, cv2.COLOR_RGB2BGR)
os.makedirs('output', exist_ok=True)
MODEL_PATH = {
"AnimeGANv2_Hayao": hf_hub_download('vumichien/AnimeGANv2_Hayao', 'AnimeGANv2_Hayao.onnx'),
"AnimeGANv2_Shinkai": hf_hub_download('vumichien/AnimeGANv2_Shinkai', 'AnimeGANv2_Shinkai.onnx'),
"AnimeGANv2_Paprika": hf_hub_download('vumichien/AnimeGANv2_Paprika', 'AnimeGANv2_Paprika.onnx'),
"AnimeGANv3_PortraitSketch": hf_hub_download('vumichien/AnimeGANv3_PortraitSketch', 'AnimeGANv3_PortraitSketch.onnx'),
"AnimeGANv3_JP_face": hf_hub_download('vumichien/AnimeGANv3_JP_face', 'AnimeGANv3_JP_face.onnx'),
}
def inference(img_path, model, focus_face=None):
print(img_path, model, focus_face)
mat, scale = load_image(img_path, focus_face)
output = convert(mat, model, scale)
save_path = f"output/out.{img_path.rsplit('.')[-1]}"
cv2.imwrite(save_path, output)
return output, save_path
### Layout ###
title = "AnimeGANv2: To produce your own animation 😶🌫️"
description = r"""### 🔥Demo AnimeGANv2: To produce your own animation. To use it, simply upload your image.
"""
article = r"""