import numpy as np import gradio as gr from huggingface_hub import from_pretrained_keras import keras import tensorflow as tf model = from_pretrained_keras("keras-io/lowlight-enhance-mirnet", compile=False) examples = ['examples/1.png', 'examples/55.png', 'examples/665.png', 'examples/778.png'] def infer(original_image): image = tf.keras.preprocessing.image.img_to_array(original_image) image = image.astype("float32") / 255.0 image = np.expand_dims(image, axis=0) output = model.predict(image) output_image = output[0] * 255.0 output_image = output_image.clip(0, 255) output_image = output_image.reshape( (np.shape(output_image)[0], np.shape(output_image)[1], 3) ) output_image = np.uint32(output_image) return output_image iface = gr.Interface( fn=infer, title="Low light image enhancement", description = "MIRNet model for light up the dark image 🌆🎆", inputs=[gr.inputs.Image(label="image", type="pil", shape=(960, 640))], outputs="image", article = "Author: Vu Minh Chien.", examples=examples).launch(enable_queue=True, cache_examples=True)