|
from typing import Optional
|
|
|
|
import gradio as gr
|
|
import numpy as np
|
|
import torch
|
|
from PIL import Image
|
|
import io
|
|
|
|
|
|
import base64, os
|
|
from utils import check_ocr_box, get_yolo_model, get_caption_model_processor, get_som_labeled_img
|
|
import torch
|
|
from PIL import Image
|
|
|
|
yolo_model = get_yolo_model(model_path='weights/icon_detect/best.pt')
|
|
caption_model_processor = get_caption_model_processor(model_name="florence2", model_name_or_path="weights/icon_caption_florence")
|
|
platform = 'pc'
|
|
if platform == 'pc':
|
|
draw_bbox_config = {
|
|
'text_scale': 0.8,
|
|
'text_thickness': 2,
|
|
'text_padding': 2,
|
|
'thickness': 2,
|
|
}
|
|
elif platform == 'web':
|
|
draw_bbox_config = {
|
|
'text_scale': 0.8,
|
|
'text_thickness': 2,
|
|
'text_padding': 3,
|
|
'thickness': 3,
|
|
}
|
|
elif platform == 'mobile':
|
|
draw_bbox_config = {
|
|
'text_scale': 0.8,
|
|
'text_thickness': 2,
|
|
'text_padding': 3,
|
|
'thickness': 3,
|
|
}
|
|
|
|
|
|
|
|
MARKDOWN = """
|
|
# OmniParser for Pure Vision Based General GUI Agent π₯
|
|
<div>
|
|
<a href="https://arxiv.org/pdf/2408.00203">
|
|
<img src="https://img.shields.io/badge/arXiv-2408.00203-b31b1b.svg" alt="Arxiv" style="display:inline-block;">
|
|
</a>
|
|
</div>
|
|
|
|
OmniParser is a screen parsing tool to convert general GUI screen to structured elements.
|
|
"""
|
|
|
|
DEVICE = torch.device('cpu')
|
|
|
|
|
|
|
|
|
|
def process(
|
|
image_input,
|
|
box_threshold,
|
|
iou_threshold
|
|
) -> Optional[Image.Image]:
|
|
|
|
image_save_path = 'imgs/saved_image_demo.png'
|
|
image_input.save(image_save_path)
|
|
|
|
|
|
ocr_bbox_rslt, is_goal_filtered = check_ocr_box(image_save_path, display_img = False, output_bb_format='xyxy', goal_filtering=None, easyocr_args={'paragraph': False, 'text_threshold':0.9})
|
|
text, ocr_bbox = ocr_bbox_rslt
|
|
|
|
dino_labled_img, label_coordinates, parsed_content_list = get_som_labeled_img(image_save_path, yolo_model, BOX_TRESHOLD = box_threshold, output_coord_in_ratio=True, ocr_bbox=ocr_bbox,draw_bbox_config=draw_bbox_config, caption_model_processor=caption_model_processor, ocr_text=text,iou_threshold=iou_threshold)
|
|
image = Image.open(io.BytesIO(base64.b64decode(dino_labled_img)))
|
|
print('finish processing')
|
|
parsed_content_list = '\n'.join(parsed_content_list)
|
|
return image, str(parsed_content_list)
|
|
|
|
|
|
|
|
with gr.Blocks() as demo:
|
|
gr.Markdown(MARKDOWN)
|
|
with gr.Row():
|
|
with gr.Column():
|
|
image_input_component = gr.Image(
|
|
type='pil', label='Upload image')
|
|
|
|
box_threshold_component = gr.Slider(
|
|
label='Box Threshold', minimum=0.01, maximum=1.0, step=0.01, value=0.05)
|
|
|
|
iou_threshold_component = gr.Slider(
|
|
label='IOU Threshold', minimum=0.01, maximum=1.0, step=0.01, value=0.1)
|
|
submit_button_component = gr.Button(
|
|
value='Submit', variant='primary')
|
|
with gr.Column():
|
|
image_output_component = gr.Image(type='pil', label='Image Output')
|
|
text_output_component = gr.Textbox(label='Parsed screen elements', placeholder='Text Output')
|
|
|
|
submit_button_component.click(
|
|
fn=process,
|
|
inputs=[
|
|
image_input_component,
|
|
box_threshold_component,
|
|
iou_threshold_component
|
|
],
|
|
outputs=[image_output_component, text_output_component]
|
|
)
|
|
|
|
|
|
demo.launch(share=True, server_port=7861, server_name='0.0.0.0') |