|
|
|
import os
|
|
import io
|
|
import base64
|
|
import time
|
|
from PIL import Image, ImageDraw, ImageFont
|
|
import json
|
|
import requests
|
|
|
|
import os
|
|
from openai import AzureOpenAI
|
|
|
|
import json
|
|
import sys
|
|
import os
|
|
import cv2
|
|
import numpy as np
|
|
|
|
from matplotlib import pyplot as plt
|
|
import easyocr
|
|
reader = easyocr.Reader(['en'])
|
|
import time
|
|
import base64
|
|
|
|
import os
|
|
import ast
|
|
import torch
|
|
from typing import Tuple, List
|
|
from torchvision.ops import box_convert
|
|
import re
|
|
from torchvision.transforms import ToPILImage
|
|
import supervision as sv
|
|
import torchvision.transforms as T
|
|
|
|
|
|
def get_caption_model_processor(model_name, model_name_or_path="Salesforce/blip2-opt-2.7b", device=None):
|
|
if not device:
|
|
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
if model_name == "blip2":
|
|
from transformers import Blip2Processor, Blip2ForConditionalGeneration
|
|
processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
|
|
if device == 'cpu':
|
|
model = Blip2ForConditionalGeneration.from_pretrained(
|
|
model_name_or_path, device_map=None, torch_dtype=torch.float32
|
|
)
|
|
else:
|
|
model = Blip2ForConditionalGeneration.from_pretrained(
|
|
model_name_or_path, device_map=None, torch_dtype=torch.float16
|
|
).to(device)
|
|
elif model_name == "florence2":
|
|
from transformers import AutoProcessor, AutoModelForCausalLM
|
|
processor = AutoProcessor.from_pretrained("microsoft/Florence-2-base", trust_remote_code=True)
|
|
if device == 'cpu':
|
|
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, torch_dtype=torch.float32, trust_remote_code=True)
|
|
else:
|
|
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, torch_dtype=torch.float16, trust_remote_code=True).to(device)
|
|
return {'model': model.to(device), 'processor': processor}
|
|
|
|
|
|
def get_yolo_model(model_path):
|
|
from ultralytics import YOLO
|
|
|
|
model = YOLO(model_path)
|
|
return model
|
|
|
|
|
|
def get_parsed_content_icon(filtered_boxes, ocr_bbox, image_source, caption_model_processor, prompt=None):
|
|
to_pil = ToPILImage()
|
|
if ocr_bbox:
|
|
non_ocr_boxes = filtered_boxes[len(ocr_bbox):]
|
|
else:
|
|
non_ocr_boxes = filtered_boxes
|
|
croped_pil_image = []
|
|
for i, coord in enumerate(non_ocr_boxes):
|
|
xmin, xmax = int(coord[0]*image_source.shape[1]), int(coord[2]*image_source.shape[1])
|
|
ymin, ymax = int(coord[1]*image_source.shape[0]), int(coord[3]*image_source.shape[0])
|
|
cropped_image = image_source[ymin:ymax, xmin:xmax, :]
|
|
croped_pil_image.append(to_pil(cropped_image))
|
|
|
|
model, processor = caption_model_processor['model'], caption_model_processor['processor']
|
|
if not prompt:
|
|
if 'florence' in model.config.name_or_path:
|
|
prompt = "<CAPTION>"
|
|
else:
|
|
prompt = "The image shows"
|
|
|
|
batch_size = 10
|
|
generated_texts = []
|
|
device = model.device
|
|
|
|
for i in range(0, len(croped_pil_image), batch_size):
|
|
batch = croped_pil_image[i:i+batch_size]
|
|
if model.device.type == 'cuda':
|
|
inputs = processor(images=batch, text=[prompt]*len(batch), return_tensors="pt").to(device=device, dtype=torch.float16)
|
|
else:
|
|
inputs = processor(images=batch, text=[prompt]*len(batch), return_tensors="pt").to(device=device)
|
|
if 'florence' in model.config.name_or_path:
|
|
generated_ids = model.generate(input_ids=inputs["input_ids"],pixel_values=inputs["pixel_values"],max_new_tokens=1024,num_beams=3, do_sample=False)
|
|
else:
|
|
generated_ids = model.generate(**inputs, max_length=100, num_beams=5, no_repeat_ngram_size=2, early_stopping=True, num_return_sequences=1)
|
|
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
|
generated_text = [gen.strip() for gen in generated_text]
|
|
generated_texts.extend(generated_text)
|
|
|
|
return generated_texts
|
|
|
|
|
|
|
|
def get_parsed_content_icon_phi3v(filtered_boxes, ocr_bbox, image_source, caption_model_processor):
|
|
to_pil = ToPILImage()
|
|
if ocr_bbox:
|
|
non_ocr_boxes = filtered_boxes[len(ocr_bbox):]
|
|
else:
|
|
non_ocr_boxes = filtered_boxes
|
|
croped_pil_image = []
|
|
for i, coord in enumerate(non_ocr_boxes):
|
|
xmin, xmax = int(coord[0]*image_source.shape[1]), int(coord[2]*image_source.shape[1])
|
|
ymin, ymax = int(coord[1]*image_source.shape[0]), int(coord[3]*image_source.shape[0])
|
|
cropped_image = image_source[ymin:ymax, xmin:xmax, :]
|
|
croped_pil_image.append(to_pil(cropped_image))
|
|
|
|
model, processor = caption_model_processor['model'], caption_model_processor['processor']
|
|
device = model.device
|
|
messages = [{"role": "user", "content": "<|image_1|>\ndescribe the icon in one sentence"}]
|
|
prompt = processor.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
|
|
|
batch_size = 5
|
|
generated_texts = []
|
|
|
|
for i in range(0, len(croped_pil_image), batch_size):
|
|
images = croped_pil_image[i:i+batch_size]
|
|
image_inputs = [processor.image_processor(x, return_tensors="pt") for x in images]
|
|
inputs ={'input_ids': [], 'attention_mask': [], 'pixel_values': [], 'image_sizes': []}
|
|
texts = [prompt] * len(images)
|
|
for i, txt in enumerate(texts):
|
|
input = processor._convert_images_texts_to_inputs(image_inputs[i], txt, return_tensors="pt")
|
|
inputs['input_ids'].append(input['input_ids'])
|
|
inputs['attention_mask'].append(input['attention_mask'])
|
|
inputs['pixel_values'].append(input['pixel_values'])
|
|
inputs['image_sizes'].append(input['image_sizes'])
|
|
max_len = max([x.shape[1] for x in inputs['input_ids']])
|
|
for i, v in enumerate(inputs['input_ids']):
|
|
inputs['input_ids'][i] = torch.cat([processor.tokenizer.pad_token_id * torch.ones(1, max_len - v.shape[1], dtype=torch.long), v], dim=1)
|
|
inputs['attention_mask'][i] = torch.cat([torch.zeros(1, max_len - v.shape[1], dtype=torch.long), inputs['attention_mask'][i]], dim=1)
|
|
inputs_cat = {k: torch.concatenate(v).to(device) for k, v in inputs.items()}
|
|
|
|
generation_args = {
|
|
"max_new_tokens": 25,
|
|
"temperature": 0.01,
|
|
"do_sample": False,
|
|
}
|
|
generate_ids = model.generate(**inputs_cat, eos_token_id=processor.tokenizer.eos_token_id, **generation_args)
|
|
|
|
generate_ids = generate_ids[:, inputs_cat['input_ids'].shape[1]:]
|
|
response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
|
response = [res.strip('\n').strip() for res in response]
|
|
generated_texts.extend(response)
|
|
|
|
return generated_texts
|
|
|
|
def remove_overlap(boxes, iou_threshold, ocr_bbox=None):
|
|
assert ocr_bbox is None or isinstance(ocr_bbox, List)
|
|
|
|
def box_area(box):
|
|
return (box[2] - box[0]) * (box[3] - box[1])
|
|
|
|
def intersection_area(box1, box2):
|
|
x1 = max(box1[0], box2[0])
|
|
y1 = max(box1[1], box2[1])
|
|
x2 = min(box1[2], box2[2])
|
|
y2 = min(box1[3], box2[3])
|
|
return max(0, x2 - x1) * max(0, y2 - y1)
|
|
|
|
def IoU(box1, box2):
|
|
intersection = intersection_area(box1, box2)
|
|
union = box_area(box1) + box_area(box2) - intersection + 1e-6
|
|
if box_area(box1) > 0 and box_area(box2) > 0:
|
|
ratio1 = intersection / box_area(box1)
|
|
ratio2 = intersection / box_area(box2)
|
|
else:
|
|
ratio1, ratio2 = 0, 0
|
|
return max(intersection / union, ratio1, ratio2)
|
|
|
|
boxes = boxes.tolist()
|
|
filtered_boxes = []
|
|
if ocr_bbox:
|
|
filtered_boxes.extend(ocr_bbox)
|
|
|
|
for i, box1 in enumerate(boxes):
|
|
|
|
is_valid_box = True
|
|
for j, box2 in enumerate(boxes):
|
|
if i != j and IoU(box1, box2) > iou_threshold and box_area(box1) > box_area(box2):
|
|
is_valid_box = False
|
|
break
|
|
if is_valid_box:
|
|
|
|
if ocr_bbox:
|
|
if not any(IoU(box1, box3) > iou_threshold for k, box3 in enumerate(ocr_bbox)):
|
|
filtered_boxes.append(box1)
|
|
else:
|
|
filtered_boxes.append(box1)
|
|
return torch.tensor(filtered_boxes)
|
|
|
|
def load_image(image_path: str) -> Tuple[np.array, torch.Tensor]:
|
|
transform = T.Compose(
|
|
[
|
|
T.RandomResize([800], max_size=1333),
|
|
T.ToTensor(),
|
|
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
|
]
|
|
)
|
|
image_source = Image.open(image_path).convert("RGB")
|
|
image = np.asarray(image_source)
|
|
image_transformed, _ = transform(image_source, None)
|
|
return image, image_transformed
|
|
|
|
|
|
def annotate(image_source: np.ndarray, boxes: torch.Tensor, logits: torch.Tensor, phrases: List[str], text_scale: float,
|
|
text_padding=5, text_thickness=2, thickness=3) -> np.ndarray:
|
|
"""
|
|
This function annotates an image with bounding boxes and labels.
|
|
|
|
Parameters:
|
|
image_source (np.ndarray): The source image to be annotated.
|
|
boxes (torch.Tensor): A tensor containing bounding box coordinates. in cxcywh format, pixel scale
|
|
logits (torch.Tensor): A tensor containing confidence scores for each bounding box.
|
|
phrases (List[str]): A list of labels for each bounding box.
|
|
text_scale (float): The scale of the text to be displayed. 0.8 for mobile/web, 0.3 for desktop # 0.4 for mind2web
|
|
|
|
Returns:
|
|
np.ndarray: The annotated image.
|
|
"""
|
|
h, w, _ = image_source.shape
|
|
boxes = boxes * torch.Tensor([w, h, w, h])
|
|
xyxy = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xyxy").numpy()
|
|
xywh = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xywh").numpy()
|
|
detections = sv.Detections(xyxy=xyxy)
|
|
|
|
labels = [f"{phrase}" for phrase in range(boxes.shape[0])]
|
|
|
|
from util.box_annotator import BoxAnnotator
|
|
box_annotator = BoxAnnotator(text_scale=text_scale, text_padding=text_padding,text_thickness=text_thickness,thickness=thickness)
|
|
annotated_frame = image_source.copy()
|
|
annotated_frame = box_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels, image_size=(w,h))
|
|
|
|
label_coordinates = {f"{phrase}": v for phrase, v in zip(phrases, xywh)}
|
|
return annotated_frame, label_coordinates
|
|
|
|
|
|
def predict(model, image, caption, box_threshold, text_threshold):
|
|
""" Use huggingface model to replace the original model
|
|
"""
|
|
model, processor = model['model'], model['processor']
|
|
device = model.device
|
|
|
|
inputs = processor(images=image, text=caption, return_tensors="pt").to(device)
|
|
with torch.no_grad():
|
|
outputs = model(**inputs)
|
|
|
|
results = processor.post_process_grounded_object_detection(
|
|
outputs,
|
|
inputs.input_ids,
|
|
box_threshold=box_threshold,
|
|
text_threshold=text_threshold,
|
|
target_sizes=[image.size[::-1]]
|
|
)[0]
|
|
boxes, logits, phrases = results["boxes"], results["scores"], results["labels"]
|
|
return boxes, logits, phrases
|
|
|
|
|
|
def predict_yolo(model, image_path, box_threshold):
|
|
""" Use huggingface model to replace the original model
|
|
"""
|
|
|
|
|
|
result = model.predict(
|
|
source=image_path,
|
|
conf=box_threshold,
|
|
|
|
)
|
|
boxes = result[0].boxes.xyxy
|
|
conf = result[0].boxes.conf
|
|
phrases = [str(i) for i in range(len(boxes))]
|
|
|
|
return boxes, conf, phrases
|
|
|
|
|
|
def get_som_labeled_img(img_path, model=None, BOX_TRESHOLD = 0.01, output_coord_in_ratio=False, ocr_bbox=None, text_scale=0.4, text_padding=5, draw_bbox_config=None, caption_model_processor=None, ocr_text=[], use_local_semantics=True, iou_threshold=0.9,prompt=None):
|
|
""" ocr_bbox: list of xyxy format bbox
|
|
"""
|
|
TEXT_PROMPT = "clickable buttons on the screen"
|
|
|
|
TEXT_TRESHOLD = 0.01
|
|
image_source = Image.open(img_path).convert("RGB")
|
|
w, h = image_source.size
|
|
|
|
if False:
|
|
xyxy, logits, phrases = predict(model=model, image=image_source, caption=TEXT_PROMPT, box_threshold=BOX_TRESHOLD, text_threshold=TEXT_TRESHOLD)
|
|
else:
|
|
xyxy, logits, phrases = predict_yolo(model=model, image_path=img_path, box_threshold=BOX_TRESHOLD)
|
|
xyxy = xyxy / torch.Tensor([w, h, w, h]).to(xyxy.device)
|
|
image_source = np.asarray(image_source)
|
|
phrases = [str(i) for i in range(len(phrases))]
|
|
|
|
|
|
h, w, _ = image_source.shape
|
|
if ocr_bbox:
|
|
ocr_bbox = torch.tensor(ocr_bbox) / torch.Tensor([w, h, w, h])
|
|
ocr_bbox=ocr_bbox.tolist()
|
|
else:
|
|
print('no ocr bbox!!!')
|
|
ocr_bbox = None
|
|
filtered_boxes = remove_overlap(boxes=xyxy, iou_threshold=iou_threshold, ocr_bbox=ocr_bbox)
|
|
|
|
|
|
if use_local_semantics:
|
|
caption_model = caption_model_processor['model']
|
|
if 'phi3_v' in caption_model.config.model_type:
|
|
parsed_content_icon = get_parsed_content_icon_phi3v(filtered_boxes, ocr_bbox, image_source, caption_model_processor)
|
|
else:
|
|
parsed_content_icon = get_parsed_content_icon(filtered_boxes, ocr_bbox, image_source, caption_model_processor, prompt=prompt)
|
|
ocr_text = [f"Text Box ID {i}: {txt}" for i, txt in enumerate(ocr_text)]
|
|
icon_start = len(ocr_text)
|
|
parsed_content_icon_ls = []
|
|
for i, txt in enumerate(parsed_content_icon):
|
|
parsed_content_icon_ls.append(f"Icon Box ID {str(i+icon_start)}: {txt}")
|
|
parsed_content_merged = ocr_text + parsed_content_icon_ls
|
|
else:
|
|
ocr_text = [f"Text Box ID {i}: {txt}" for i, txt in enumerate(ocr_text)]
|
|
parsed_content_merged = ocr_text
|
|
|
|
filtered_boxes = box_convert(boxes=filtered_boxes, in_fmt="xyxy", out_fmt="cxcywh")
|
|
|
|
phrases = [i for i in range(len(filtered_boxes))]
|
|
|
|
|
|
if draw_bbox_config:
|
|
annotated_frame, label_coordinates = annotate(image_source=image_source, boxes=filtered_boxes, logits=logits, phrases=phrases, **draw_bbox_config)
|
|
else:
|
|
annotated_frame, label_coordinates = annotate(image_source=image_source, boxes=filtered_boxes, logits=logits, phrases=phrases, text_scale=text_scale, text_padding=text_padding)
|
|
|
|
pil_img = Image.fromarray(annotated_frame)
|
|
buffered = io.BytesIO()
|
|
pil_img.save(buffered, format="PNG")
|
|
encoded_image = base64.b64encode(buffered.getvalue()).decode('ascii')
|
|
if output_coord_in_ratio:
|
|
|
|
label_coordinates = {k: [v[0]/w, v[1]/h, v[2]/w, v[3]/h] for k, v in label_coordinates.items()}
|
|
assert w == annotated_frame.shape[1] and h == annotated_frame.shape[0]
|
|
|
|
return encoded_image, label_coordinates, parsed_content_merged
|
|
|
|
|
|
def get_xywh(input):
|
|
x, y, w, h = input[0][0], input[0][1], input[2][0] - input[0][0], input[2][1] - input[0][1]
|
|
x, y, w, h = int(x), int(y), int(w), int(h)
|
|
return x, y, w, h
|
|
|
|
def get_xyxy(input):
|
|
x, y, xp, yp = input[0][0], input[0][1], input[2][0], input[2][1]
|
|
x, y, xp, yp = int(x), int(y), int(xp), int(yp)
|
|
return x, y, xp, yp
|
|
|
|
def get_xywh_yolo(input):
|
|
x, y, w, h = input[0], input[1], input[2] - input[0], input[3] - input[1]
|
|
x, y, w, h = int(x), int(y), int(w), int(h)
|
|
return x, y, w, h
|
|
|
|
|
|
|
|
def check_ocr_box(image_path, display_img = True, output_bb_format='xywh', goal_filtering=None, easyocr_args=None):
|
|
if easyocr_args is None:
|
|
easyocr_args = {}
|
|
result = reader.readtext(image_path, **easyocr_args)
|
|
is_goal_filtered = False
|
|
|
|
coord = [item[0] for item in result]
|
|
text = [item[1] for item in result]
|
|
|
|
if display_img:
|
|
opencv_img = cv2.imread(image_path)
|
|
opencv_img = cv2.cvtColor(opencv_img, cv2.COLOR_RGB2BGR)
|
|
bb = []
|
|
for item in coord:
|
|
x, y, a, b = get_xywh(item)
|
|
|
|
bb.append((x, y, a, b))
|
|
cv2.rectangle(opencv_img, (x, y), (x+a, y+b), (0, 255, 0), 2)
|
|
|
|
|
|
plt.imshow(opencv_img)
|
|
else:
|
|
if output_bb_format == 'xywh':
|
|
bb = [get_xywh(item) for item in coord]
|
|
elif output_bb_format == 'xyxy':
|
|
bb = [get_xyxy(item) for item in coord]
|
|
|
|
return (text, bb), is_goal_filtered
|
|
|
|
|
|
|
|
|