import gradio as gr from PIL import Image import numpy as np import torch model = torch.hub.load('./yolov5', 'custom', path='./best.pt', force_reload=True, source='local') def yolo(im, size=512): g = (size / max(im.size)) # gain im = im.resize((int(x * g) for x in im.size), Image.ANTIALIAS) # resize results = model(im) # inference results.render() # updates results.imgs with boxes and labels return Image.fromarray(results.ims[0]) gr.Interface(fn=yolo, inputs=gr.inputs.Image(type = "pil", label = "Original Image"), outputs=gr.outputs.Image(type = "pil", label = "Output Image")).launch()