Spaces:
Sleeping
Sleeping
DexterSptizu
commited on
Commit
•
fcc241e
1
Parent(s):
7a451aa
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
# Load the token classification model
|
5 |
+
pipe = pipeline("token-classification", model="Clinical-AI-Apollo/Medical-NER", aggregation_strategy='simple')
|
6 |
+
|
7 |
+
def classify_text(text):
|
8 |
+
# Get token classification results
|
9 |
+
result = pipe(text)
|
10 |
+
|
11 |
+
# Format the results to resemble the UI shown in the image
|
12 |
+
formatted_output = ""
|
13 |
+
for res in result:
|
14 |
+
entity = res['entity_group']
|
15 |
+
word = res['word']
|
16 |
+
score = res['score']
|
17 |
+
start = res['start']
|
18 |
+
end = res['end']
|
19 |
+
formatted_output += f"Entity: {entity}, Word: {word}, Score: {score:.4f}, Span: [{start}:{end}]\n"
|
20 |
+
|
21 |
+
return formatted_output
|
22 |
+
|
23 |
+
# Gradio Interface
|
24 |
+
demo = gr.Interface(
|
25 |
+
fn=classify_text,
|
26 |
+
inputs=gr.Textbox(lines=5, label="Enter Medical Text"),
|
27 |
+
outputs=gr.Textbox(label="Entity Classification"),
|
28 |
+
title="Medical Entity Classification",
|
29 |
+
description="Enter medical-related text, and the model will classify medical entities.",
|
30 |
+
examples=[
|
31 |
+
["45 year old woman diagnosed with CAD"],
|
32 |
+
["A 65-year-old male presents with acute chest pain and a history of hypertension."],
|
33 |
+
["The patient underwent a laparoscopic cholecystectomy."]
|
34 |
+
]
|
35 |
+
)
|
36 |
+
|
37 |
+
if __name__ == "__main__":
|
38 |
+
demo.launch()
|