File size: 2,182 Bytes
01422d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7835555
01422d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import streamlit as st
from PIL import Image
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
import os

def load_model():
    # Placeholder for model loading
    # In real implementation, you would load the Maya model here
    pass

def process_image_text(image, text, language):
    # Placeholder for processing
    # In real implementation, this would use the Maya model
    pass

def main():
    st.set_page_config(page_title="Maya - Multilingual Vision Language Assistant", layout="wide")
    
    st.title("🌟 Maya: Multimodal Multilingual Assistant")
    st.markdown("Interact with images and text in multiple languages")
    
    # Sidebar for language selection
    languages = ["English", "Hindi", "Spanish", "French", "Chinese", "Arabic"]
    selected_language = st.sidebar.selectbox("Select Language", languages)
    
    # Main content area
    col1, col2 = st.columns(2)
    
    with col1:
        st.subheader("Upload Image")
        uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"])
        
        if uploaded_file is not None:
            image = Image.open(uploaded_file)
            st.image(image, caption="Uploaded Image", use_container_width=True)
    
    with col2:
        st.subheader("Enter Your Query")
        user_query = st.text_area("Type your question about the image...")
        
        if st.button("Process"):
            if uploaded_file is None:
                st.error("Please upload an image first!")
            elif not user_query:
                st.error("Please enter a query!")
            else:
                with st.spinner("Processing..."):
                    try:
                        response = process_image_text(image, user_query, selected_language)
                        st.success("Processing Complete!")
                        st.markdown("### Response:")
                        st.write(response)
                    except Exception as e:
                        st.error(f"An error occurred: {str(e)}")
    
    # Footer
    st.markdown("---")
    st.markdown("Powered by Maya: Multimodal Multilingual LLM")

if __name__ == "__main__":
    main()