Spaces:
Sleeping
Sleeping
File size: 4,537 Bytes
74129e6 919a9c1 a032ead 5b1ccca d119d56 5b1ccca 48411ba 74129e6 a032ead 74129e6 a032ead 74129e6 a032ead 919a9c1 a032ead 919a9c1 542d6f3 a032ead 5b1ccca 542d6f3 5b1ccca e1a5f90 a032ead 5b1ccca a032ead 74129e6 a63ae46 74129e6 a032ead 74129e6 5fd968a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
import gradio as gr
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
from aksharamukha import transliterate
import torch
from dotenv import load_dotenv
import os
import requests
access_token = os.getenv('token')
# Set up device
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load translation models and tokenizers
trans_model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M").to(device)
eng_trans_tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
translator = pipeline('translation', model=trans_model, tokenizer=eng_trans_tokenizer, src_lang="eng_Latn", tgt_lang='sin_Sinh', max_length=400, device=device)
sin_trans_model = AutoModelForSeq2SeqLM.from_pretrained("thilina/mt5-sinhalese-english").to(device)
si_trans_tokenizer = AutoTokenizer.from_pretrained("thilina/mt5-sinhalese-english", use_fast=False)
singlish_pipe = pipeline("text2text-generation", model="Dhahlan2000/Simple_Translation-model-for-GPT-v14")
# Translation functions
def translate_Singlish_to_sinhala(text):
translated_text = singlish_pipe(f"translate Singlish to Sinhala: {text}", clean_up_tokenization_spaces=False)[0]['generated_text']
return translated_text
def translate_english_to_sinhala(text):
parts = text.split("\n")
translated_parts = [translator(part, clean_up_tokenization_spaces=False)[0]['translation_text'] for part in parts]
return "\n".join(translated_parts).replace("ප් රභූවරුන්", "")
def translate_sinhala_to_english(text):
parts = text.split("\n")
translated_parts = []
for part in parts:
inputs = si_trans_tokenizer(part.strip(), return_tensors="pt", padding=True, truncation=True, max_length=512).to(device)
outputs = sin_trans_model.generate(**inputs)
translated_part = si_trans_tokenizer.decode(outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
translated_parts.append(translated_part)
return "\n".join(translated_parts)
def transliterate_from_sinhala(text):
latin_text = transliterate.process('Sinhala', 'Velthuis', text).replace('.', '').replace('*', '').replace('"', '').lower()
return latin_text
def transliterate_to_sinhala(text):
return transliterate.process('Velthuis', 'Sinhala', text)
# Placeholder for conversation model loading and pipeline setup
# pipe1 = pipeline("text-generation", model="microsoft/Phi-3-mini-4k-instruct", trust_remote_code=True)
# interface = gr.Interface.load("huggingface/microsoft/Phi-3-mini-4k-instruct")
API_URL = "https://api-inference.huggingface.co/models/microsoft/Phi-3-mini-4k-instruct"
headers = {"Authorization": f"Bearer {access_token}"}
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
# def conversation_predict(text):
# return interface([text])[0]
def ai_predicted(user_input):
if user_input.lower() == 'exit':
return "Goodbye!"
user_input = translate_Singlish_to_sinhala(user_input)
user_input = transliterate_to_sinhala(user_input)
user_input = translate_sinhala_to_english(user_input)
ai_response = query({
"inputs": user_input,
})
# ai_response = conversation_predict(user_input)
ai_response_lines = ai_response.split("</s>")
response = translate_english_to_sinhala(ai_response_lines[-1])
response = transliterate_from_sinhala(response)
return response
# Gradio Interface
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ai_predicted(message)
yield response
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch(share=True) |