Chitti-v1 / app.py
Dhahlan2000's picture
Update app.py
5cbe369 verified
raw
history blame
6.13 kB
import gradio as gr
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
from aksharamukha import transliterate
import torch
from dotenv import load_dotenv
import os
import requests
access_token = os.getenv('token')
# Set up device
device = "cuda" if torch.cuda.is_available() else "cpu"
chat_language = 'sin_Sinh'
trans_model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M")
eng_trans_tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
device = "cuda" if torch.cuda.is_available() else "cpu"
translator = pipeline('translation', model=trans_model, tokenizer=eng_trans_tokenizer, src_lang="eng_Latn", tgt_lang=chat_language, max_length = 400, device=device)
# Initialize translation pipelines
pipe = pipeline("translation", model="thilina/mt5-sinhalese-english")
sin_trans_model = AutoModelForSeq2SeqLM.from_pretrained("thilina/mt5-sinhalese-english")
si_trans_tokenizer = AutoTokenizer.from_pretrained("thilina/mt5-sinhalese-english")
singlish_pipe = pipeline("text2text-generation", model="Dhahlan2000/Simple_Translation-model-for-GPT-v8")
# Translation functions
def translate_Singlish_to_sinhala(text):
translated_text = singlish_pipe(f"translate Singlish to Sinhala: {text}", clean_up_tokenization_spaces=False)[0]['generated_text']
return translated_text.replace('\u200d', '')
def translate_english_to_sinhala(text):
# Split the text into sentences or paragraphs
parts = text.split("\n") # Split by new lines for paragraphs, adjust as needed
translated_parts = []
for part in parts:
translated_part = translator(part, clean_up_tokenization_spaces=False)[0]['translation_text']
translated_parts.append(translated_part)
# Join the translated parts back together
translated_text = "\n".join(translated_parts)
return translated_text.replace("ප් රභූවරුන්", "").replace('\u200d', '')
def translate_sinhala_to_english(text):
# Split the text into sentences or paragraphs
parts = text.split("\n") # Split by new lines for paragraphs, adjust as needed
translated_parts = []
for part in parts:
# Tokenize each part
inputs = si_trans_tokenizer(part.strip(), return_tensors="pt", padding=True, truncation=True, max_length=512)
# Generate translation
outputs = sin_trans_model.generate(**inputs)
# Decode translated text while preserving formatting
translated_part = si_trans_tokenizer.decode(outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
translated_parts.append(translated_part)
# Join the translated parts back together
translated_text = "\n".join(translated_parts)
return translated_text
def transliterate_from_sinhala(text):
# Define the source and target scripts
source_script = 'Sinhala'
target_script = 'Velthuis'
# Perform transliteration
latin_text = transliterate.process(source_script, target_script, text)
# Convert to a list to allow modification
latin_text_list = list(latin_text)
# Replace periods with the following character
i = 0
for i in range(len(latin_text_list) - 1):
if latin_text_list[i] == '.':
latin_text_list[i] = ''
if latin_text_list[i] == '*':
latin_text_list[i] = ''
if latin_text_list[i] == '\"':
latin_text_list[i] = ''
# Convert back to a string
latin_text = ''.join(latin_text_list)
return latin_text.lower()
def transliterate_to_sinhala(text):
# Define the source and target scripts
source_script = 'Velthuis'
target_script = 'Sinhala'
# Perform transliteration
latin_text = transliterate.process(source_script, target_script, text)
return latin_text
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it", token = access_token)
model = AutoModelForCausalLM.from_pretrained(
"google/gemma-2b-it",
torch_dtype=torch.bfloat16,
token = access_token
)
def conversation_predict(input_text):
input_ids = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(**input_ids)
return tokenizer.decode(outputs[0])
def ai_predicted(user_input):
user_input = translate_Singlish_to_sinhala(user_input)
print("You(Singlish): ", user_input,"\n")
user_input = transliterate_to_sinhala(user_input)
print("You(Sinhala): ", user_input,"\n")
user_input = translate_sinhala_to_english(user_input)
print("You(English): ", user_input,"\n")
# Get AI response
ai_response = conversation_predict(user_input)
# Split the AI response into separate lines
# ai_response_lines = ai_response.split("</s>")
print("AI(English): ", ai_response,"\n")
response = translate_english_to_sinhala(ai_response)
print("AI(Sinhala): ", response,"\n")
response = transliterate_from_sinhala(response)
print(response)
return response
# Gradio Interface
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ai_predicted(message)
yield response
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch(share=True)