Spaces:
Sleeping
Sleeping
import streamlit as st | |
from huggingface_hub import InferenceClient | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
import os | |
# Replace 'your_huggingface_token' with your actual Hugging Face access token | |
access_token = os.getenv('token') | |
# Initialize the tokenizer and model with the Hugging Face access token | |
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it", use_auth_token=access_token) | |
model = AutoModelForCausalLM.from_pretrained( | |
"google/gemma-2b-it", | |
torch_dtype=torch.bfloat16, | |
use_auth_token=access_token | |
) | |
model.eval() # Set the model to evaluation mode | |
# Initialize the inference client (if needed for other API-based tasks) | |
client = InferenceClient(token=access_token) | |
def conversation_predict(input_text): | |
"""Generate a response for single-turn input using the model.""" | |
# Tokenize the input text | |
input_ids = tokenizer(input_text, return_tensors="pt").input_ids | |
# Generate a response with the model | |
outputs = model.generate(input_ids, max_new_tokens=2048) | |
# Decode and return the generated response | |
return tokenizer.decode(outputs[0], skip_special_tokens=True) | |
def respond(): | |
"""Streamlit app for a multi-turn chat conversation.""" | |
st.title("Chat with Gemma") | |
system_message = st.text_input("System message", value="You are a friendly Chatbot.") | |
max_tokens = st.slider("Max new tokens", min_value=1, max_value=2048, value=512, step=1) | |
temperature = st.slider("Temperature", min_value=0.1, max_value=4.0, value=0.7, step=0.1) | |
top_p = st.slider("Top-p (nucleus sampling)", min_value=0.1, max_value=1.0, value=0.95, step=0.05) | |
message = st.text_input("Your message") | |
if message: | |
response = conversation_predict(message) | |
st.write(response) | |
if __name__ == "__main__": | |
respond() | |