Dhrumit1314 commited on
Commit
4e1967e
·
1 Parent(s): be8e27d

Files Added

Browse files
Files changed (3) hide show
  1. Dockerfile +20 -0
  2. app.py +232 -0
  3. requirements.txt +11 -0
Dockerfile ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Use the official Python image as the base image
2
+ FROM python:3.9
3
+
4
+ # Set the working directory inside the container
5
+ WORKDIR /code
6
+
7
+ # Copy the requirements file into the container at /code
8
+ COPY ./requirements.txt /code/requirements.txt
9
+
10
+ # Install the required Python packages
11
+ RUN pip install --no-cache-dir --upgrade -r requirements.txt
12
+
13
+ # Copy the entire current directory into the container at /code
14
+ COPY . .
15
+
16
+ # Expose port 5000 to the outside world
17
+ EXPOSE 5000
18
+
19
+ # Command to run the Flask applicationW
20
+ CMD ["python", "app.py"]
app.py ADDED
@@ -0,0 +1,232 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import re
3
+ import time
4
+ from concurrent.futures import ThreadPoolExecutor
5
+ import matplotlib.pyplot as plt
6
+ import moviepy.editor as mp
7
+ import requests
8
+ import spacy
9
+ import speech_recognition as sr
10
+ import tensorflow as tf
11
+ from flask import Flask, jsonify, request
12
+ from flask_cors import CORS
13
+ from io import BytesIO
14
+ from requests import get
15
+ from string import punctuation
16
+ from tqdm import tqdm
17
+ from transformers import BartTokenizer, T5ForConditionalGeneration, T5Tokenizer, TFBartForConditionalGeneration
18
+ from youtube_transcript_api import YouTubeTranscriptApi as yta
19
+ from wordcloud import WordCloud
20
+ from heapq import nlargest
21
+ from werkzeug.utils import secure_filename
22
+ from spacy.lang.en.stop_words import STOP_WORDS
23
+
24
+ # Change the directory to the backend folder
25
+ os.chdir("E:/Centennial/SEMESTER 6/Software Development Project/backend/")
26
+
27
+ # Create a Flask app
28
+ app = Flask(__name__)
29
+ CORS(app)
30
+
31
+ # Function to extract video ID from YouTube link
32
+ def extract_video_id(youtube_link):
33
+ pattern = re.compile(r'(?<=v=)[a-zA-Z0-9_-]+(?=&|\b|$)')
34
+ match = pattern.search(youtube_link)
35
+ if match:
36
+ return match.group()
37
+ else:
38
+ return None
39
+
40
+ # Route for uploading video files
41
+ @app.route('/upload_video', methods=['POST'])
42
+ def upload_video():
43
+ start_time = time.time()
44
+ if 'video' not in request.files:
45
+ return jsonify({'error': 'No video file found in the request'})
46
+ video = request.files['video']
47
+ if video.mimetype.split('/')[0] != 'video':
48
+ return jsonify({'error': 'The file uploaded is not a video'})
49
+
50
+ model_name = request.form.get('modelName')
51
+ print("MODEL:", model_name)
52
+
53
+ backend_folder = 'backend_videos'
54
+ if not os.path.exists(backend_folder):
55
+ os.makedirs(backend_folder)
56
+ video_path = os.path.join(backend_folder, secure_filename(video.filename))
57
+ video.save(video_path)
58
+
59
+ transcript = transcribe_audio(video_path)
60
+
61
+ summary = ""
62
+ if model_name == 'T5':
63
+ summary = summarize_text_t5(transcript)
64
+ elif model_name == 'BART':
65
+ summary = summarize_text_bart(transcript)
66
+ else:
67
+ summary = summarizer(transcript)
68
+
69
+ end_time = time.time()
70
+ elapsed_time = end_time - start_time
71
+ print(f"Video saved successfully. Time taken: {elapsed_time} seconds")
72
+
73
+ return jsonify({'message': 'successful', 'transcript': transcript, 'summary': summary, 'modelName': model_name})
74
+
75
+ # Route for uploading YouTube video links
76
+ @app.route('/youtube_upload_video', methods=['POST'])
77
+ def upload_youtube_video():
78
+ start_time = time.time()
79
+ transcript = "Testing text"
80
+ summary = "Testing text"
81
+
82
+ model_name = request.form.get('modelName')
83
+ youtube_link = request.form.get('link')
84
+ print('link', youtube_link)
85
+ video_id = extract_video_id(youtube_link)
86
+ if video_id is None:
87
+ return jsonify({'message': 'successful', 'transcript': "error with youtube link", 'summary': "error with youtube link", 'modelName': model_name})
88
+
89
+ transcript = generate_and_save_transcript_with_visuals(video_id)
90
+ summary = ""
91
+ if model_name == 'T5':
92
+ summary = summarize_text_t5(transcript)
93
+ elif model_name == 'BART':
94
+ summary = summarize_text_bart(transcript)
95
+ else:
96
+ summary = summarizer(transcript)
97
+
98
+ end_time = time.time()
99
+ elapsed_time = end_time - start_time
100
+ print(f"Video saved successfully. Time taken: {elapsed_time} seconds")
101
+
102
+ return jsonify({'message': 'successful', 'transcript': transcript, 'summary': summary, 'modelName': model_name})
103
+
104
+ # Function to generate transcript and visuals for YouTube videos
105
+ def generate_and_save_transcript_with_visuals(video_id, file_name="yt_generated_transcript.txt"):
106
+ try:
107
+ data = yta.get_transcript(video_id)
108
+ transcript = ''
109
+ for value in tqdm(data, desc="Downloading Transcript", unit=" lines"):
110
+ for key, val in value.items():
111
+ if key == 'text':
112
+ transcript += val + ' '
113
+ transcript = transcript.strip()
114
+ return transcript
115
+ except Exception as e:
116
+ print(f"Error: {str(e)}")
117
+
118
+ # Transcribe audio from video
119
+ def transcribe_audio(file_path, chunk_duration=30):
120
+ video = mp.VideoFileClip(file_path)
121
+ audio = video.audio
122
+ audio.write_audiofile("sample_audio.wav", codec='pcm_s16le')
123
+
124
+ r = sr.Recognizer()
125
+ with sr.AudioFile("sample_audio.wav") as source:
126
+ audio = r.record(source)
127
+
128
+ total_duration = len(audio.frame_data) / audio.sample_rate
129
+ total_chunks = int(total_duration / chunk_duration) + 1
130
+
131
+ all_text = []
132
+
133
+ def transcribe_chunk(start):
134
+ nonlocal all_text
135
+ chunk = audio.get_segment(start * 1000, (start + chunk_duration) * 1000)
136
+ try:
137
+ text = r.recognize_google(chunk)
138
+ all_text.append(text)
139
+ print(f" Chunk {start}-{start+chunk_duration}: {text}")
140
+ except sr.UnknownValueError:
141
+ all_text.append("")
142
+ except sr.RequestError as e:
143
+ all_text.append(f"[Error: {e}]")
144
+
145
+ num_threads = min(total_chunks, total_chunks + 5)
146
+ with ThreadPoolExecutor(max_workers=num_threads) as executor:
147
+ list(tqdm(executor.map(transcribe_chunk, range(0, int(total_duration), chunk_duration)),
148
+ total=total_chunks, desc="Transcribing on multithreading: "))
149
+
150
+ wordcloud = WordCloud(width=800, height=400, background_color="white").generate(' '.join(all_text))
151
+ plt.figure(figsize=(10, 5))
152
+ plt.imshow(wordcloud, interpolation='bilinear')
153
+ plt.axis("off")
154
+ plt.show()
155
+
156
+ return ' '.join(all_text)
157
+
158
+ # Load pre-trained models and tokenizers
159
+ tokenizer_bart = BartTokenizer.from_pretrained('facebook/bart-large')
160
+ tokenizer_t5 = T5Tokenizer.from_pretrained('t5-small')
161
+
162
+ with tf.device('/CPU:0'):
163
+ model_t5 = T5ForConditionalGeneration.from_pretrained("Dhrumit1314/T5_TextSummary")
164
+ model_bart = TFBartForConditionalGeneration.from_pretrained("Dhrumit1314/BART_TextSummary")
165
+
166
+ # Function to summarize text using T5 model
167
+ def summarize_text_t5(text):
168
+ start_time = time.time()
169
+ t5_prepared_Text = "summarize: "+text
170
+ tokenized_text = tokenizer_t5.encode(t5_prepared_Text, return_tensors="pt")
171
+ summary_ids = model_t5.generate(tokenized_text,
172
+ num_beams=4,
173
+ no_repeat_ngram_size=2,
174
+ min_length=256,
175
+ max_length=512,
176
+ early_stopping=True)
177
+ output = tokenizer_t5.decode(summary_ids[0], skip_special_tokens=True)
178
+ end_time = time.time()
179
+ print(f"Execution time for T5 Model: {end_time - start_time} seconds")
180
+ return output
181
+
182
+ def summarize_text_bart(text):
183
+ start_time = time.time()
184
+ inputs = tokenizer_bart([text], max_length=1024, return_tensors='tf')
185
+ summary_ids = model_bart.generate(inputs['input_ids'], num_beams=4, max_length=256, early_stopping=True)
186
+ output = [tokenizer_bart.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in summary_ids]
187
+ end_time = time.time()
188
+ print(f"Execution time for BART Model: {end_time - start_time} seconds")
189
+ return output[0]
190
+
191
+ # Spacy summarizer
192
+ def summarizer(rawdocs):
193
+ stopwords = list(STOP_WORDS)
194
+ nlp = spacy.load('en_core_web_sm')
195
+ doc = nlp(rawdocs)
196
+ tokens = [token.text for token in doc]
197
+ word_freq = {}
198
+ for word in doc:
199
+ if word.text.lower() not in stopwords and word.text.lower() not in punctuation:
200
+ if word.text not in word_freq.keys():
201
+ word_freq[word.text] = 1
202
+ else:
203
+ word_freq[word.text] += 1
204
+
205
+ max_freq = max(word_freq.values())
206
+
207
+ for word in word_freq.keys():
208
+ word_freq[word] = word_freq[word]/max_freq
209
+
210
+ sent_tokens = [sent for sent in doc.sents]
211
+
212
+ sent_scores = {}
213
+
214
+ for sent in sent_tokens:
215
+ for word in sent:
216
+ if word.text in word_freq.keys():
217
+ if sent not in sent_scores.keys():
218
+ sent_scores[sent] = word_freq[word.text]
219
+ else:
220
+ sent_scores[sent] += word_freq[word.text]
221
+
222
+ select_len = int(len(sent_tokens) * 0.3)
223
+ summary = nlargest(select_len, sent_scores, key=sent_scores.get)
224
+ final_summary = [word.text for word in summary]
225
+ summary = ' '.join(final_summary)
226
+
227
+ return summary
228
+
229
+ # Main run function
230
+ if __name__ == '__main__':
231
+ os.chdir("E:/Centennial/SEMESTER 6/Software Development Project/backend/")
232
+ app.run(debug=True, port=5000, use_reloader=False)
requirements.txt ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ matplotlib==3.8
2
+ moviepy==1.0
3
+ requests
4
+ spacy==3.7
5
+ speechrecognition==3.10
6
+ tensorflow==2.10
7
+ flask==3.0
8
+ flask-cors==4.0
9
+ transformers==4.38
10
+ youtube-transcript-api==0.6
11
+ wordcloud==1.9