Spaces:
Sleeping
Sleeping
File size: 6,285 Bytes
aa2b9a2 58ca1a1 aa2b9a2 58ca1a1 aa2b9a2 58ca1a1 aa2b9a2 58ca1a1 aa2b9a2 58ca1a1 aa2b9a2 58ca1a1 aa2b9a2 58ca1a1 aa2b9a2 58ca1a1 aa2b9a2 58ca1a1 aa2b9a2 58ca1a1 aa2b9a2 58ca1a1 aa2b9a2 58ca1a1 aa2b9a2 58ca1a1 aa2b9a2 58ca1a1 aa2b9a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
# Code copied and modified from https://huggingface.co/spaces/BAAI/SegVol/blob/main/utils.py
from pathlib import Path
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import SimpleITK as sitk
import torch
from mrsegmentator import inference
from mrsegmentator.utils import add_postfix
from PIL import Image
from scipy import ndimage
import streamlit as st
initial_rectangle = {
"version": "4.4.0",
"objects": [
{
"type": "rect",
"version": "4.4.0",
"originX": "left",
"originY": "top",
"left": 50,
"top": 50,
"width": 100,
"height": 100,
"fill": "rgba(255, 165, 0, 0.3)",
"stroke": "#2909F1",
"strokeWidth": 3,
"strokeDashArray": None,
"strokeLineCap": "butt",
"strokeDashOffset": 0,
"strokeLineJoin": "miter",
"strokeUniform": True,
"strokeMiterLimit": 4,
"scaleX": 1,
"scaleY": 1,
"angle": 0,
"flipX": False,
"flipY": False,
"opacity": 1,
"shadow": None,
"visible": True,
"backgroundColor": "",
"fillRule": "nonzero",
"paintFirst": "fill",
"globalCompositeOperation": "source-over",
"skewX": 0,
"skewY": 0,
"rx": 0,
"ry": 0,
}
],
}
def run(tmpdirname):
if st.session_state.option is not None:
image = Path(__file__).parent / str(st.session_state.option)
inference.infer([image], tmpdirname, st.session_state.folds, split_level=1)
seg_name = add_postfix(image.name, "seg")
preds_path = tmpdirname + "/" + seg_name
st.session_state.preds_3D = read_image(preds_path)
st.session_state.preds_3D_ori = sitk.ReadImage(preds_path)
def reflect_box_into_model(box_3d):
z1, y1, x1, z2, y2, x2 = box_3d
x1_prompt = int(x1 * 256.0 / 325.0)
y1_prompt = int(y1 * 256.0 / 325.0)
z1_prompt = int(z1 * 32.0 / 325.0)
x2_prompt = int(x2 * 256.0 / 325.0)
y2_prompt = int(y2 * 256.0 / 325.0)
z2_prompt = int(z2 * 32.0 / 325.0)
return torch.tensor(np.array([z1_prompt, y1_prompt, x1_prompt, z2_prompt, y2_prompt, x2_prompt]))
def reflect_json_data_to_3D_box(json_data, view):
if view == "xy":
st.session_state.rectangle_3Dbox[1] = json_data["objects"][0]["top"]
st.session_state.rectangle_3Dbox[2] = json_data["objects"][0]["left"]
st.session_state.rectangle_3Dbox[4] = (
json_data["objects"][0]["top"] + json_data["objects"][0]["height"] * json_data["objects"][0]["scaleY"]
)
st.session_state.rectangle_3Dbox[5] = (
json_data["objects"][0]["left"] + json_data["objects"][0]["width"] * json_data["objects"][0]["scaleX"]
)
print(st.session_state.rectangle_3Dbox)
def make_fig(image, preds, px_range=(10, 400), transparency=0.5):
fig, ax = plt.subplots(1, 1, figsize=(4, 4))
image_slice = image.clip(*px_range)
ax.imshow(
image_slice,
cmap="Greys_r",
vmin=px_range[0],
vmax=px_range[1],
)
if preds is not None:
image_slice = np.array(preds)
alpha = np.zeros(image_slice.shape)
alpha[image_slice > 0.1] = transparency
ax.imshow(
image_slice,
cmap="jet",
alpha=alpha,
vmin=0,
vmax=40,
)
# plot edges
edge_slice = np.zeros(image_slice.shape, dtype=int)
for i in np.unique(image_slice):
_slice = image_slice.copy()
_slice[_slice != i] = 0
edges = ndimage.laplace(_slice)
edge_slice[edges != 0] = i
cmap = mpl.cm.jet(np.linspace(0, 1, int(preds.max())))
cmap -= 0.4
cmap = cmap.clip(0, 1)
cmap = mpl.colors.ListedColormap(cmap)
alpha = np.zeros(edge_slice.shape)
alpha[edge_slice > 0.01] = 0.9
ax.imshow(
edge_slice,
alpha=alpha,
cmap=cmap,
vmin=0,
vmax=40,
)
plt.axis("off")
ax.set_xticks([])
ax.set_yticks([])
fig.canvas.draw()
# transform to image
return Image.frombytes("RGB", fig.canvas.get_width_height(), fig.canvas.tostring_rgb())
#######################################
def make_isotropic(image, interpolator=sitk.sitkLinear, spacing=None):
"""
Many file formats (e.g. jpg, png,...) expect the pixels to be isotropic, same
spacing for all axes. Saving non-isotropic data in these formats will result in
distorted images. This function makes an image isotropic via resampling, if needed.
Args:
image (SimpleITK.Image): Input image.
interpolator: By default the function uses a linear interpolator. For
label images one should use the sitkNearestNeighbor interpolator
so as not to introduce non-existant labels.
spacing (float): Desired spacing. If none given then use the smallest spacing from
the original image.
Returns:
SimpleITK.Image with isotropic spacing which occupies the same region in space as
the input image.
"""
original_spacing = image.GetSpacing()
# Image is already isotropic, just return a copy.
if all(spc == original_spacing[0] for spc in original_spacing):
return sitk.Image(image)
# Make image isotropic via resampling.
original_size = image.GetSize()
if spacing is None:
spacing = min(original_spacing)
new_spacing = [spacing] * image.GetDimension()
new_size = [int(round(osz * ospc / spacing)) for osz, ospc in zip(original_size, original_spacing)]
return sitk.Resample(
image,
new_size,
sitk.Transform(),
interpolator,
image.GetOrigin(),
new_spacing,
image.GetDirection(),
0, # default pixel value
image.GetPixelID(),
)
def read_image(path):
img = sitk.ReadImage(path)
img = sitk.DICOMOrient(img, "LPS")
img = make_isotropic(img)
img = sitk.GetArrayFromImage(img)
return img
|