Spaces:
Sleeping
Sleeping
File size: 6,966 Bytes
2854813 8507fc0 2854813 ea5dd9a 2854813 a082340 2854813 8507fc0 2854813 ede8a06 2854813 9a919aa 2854813 ede8a06 2854813 ede8a06 2854813 ede8a06 2854813 ede8a06 2854813 8507fc0 ede8a06 2854813 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
"""app.py
Smolagents agent given an SQL tool over a SQLite database built with data files
from the Internation Consortium of Investigative Journalism (ICIJ.org).
Agentic framework:
- smolagents
Database:
- SQLite
Generation:
- Mistral
:author: Didier Guillevic
:date: 2025-01-12
"""
import gradio as gr
import icij_utils
import sqlalchemy
import smolagents
import os
import pathlib
#
# Init a SQLite database with the data files from ICIJ.org
#
ICIJ_LEAKS_DB_NAME = 'icij_leaks.db'
ICIJ_LEAKS_DATA_DIR = './icij_data'
# Remove existing database (if present), since we will recreate it below.
icij_db_path = pathlib.Path(ICIJ_LEAKS_DB_NAME)
icij_db_path.unlink(missing_ok=True)
# Load ICIJ data files into an SQLite database
loader = icij_utils.ICIJDataLoader(ICIJ_LEAKS_DB_NAME)
loader.load_all_files(ICIJ_LEAKS_DATA_DIR)
#
# Init an SQLAchemy instane (over the SQLite database)
#
db = icij_utils.ICIJDatabaseConnector(ICIJ_LEAKS_DB_NAME)
schema = db.get_full_database_schema()
#
# Build an SQL tool
#
schema = db.get_full_database_schema()
metadata = icij_utils.ICIJDatabaseMetadata()
tool_description = (
"Tool for querying the ICIJ offshore database containing financial data leaks. "
"This tool can execute SQL queries and return the results. "
"Beware that this tool's output is a string representation of the execution output.\n"
"It can use the following tables:"
)
# Add table documentation
for table, doc in metadata.TABLE_DOCS.items():
tool_description += f"\n\nTable: {table}\n"
tool_description += f"Description: {doc.strip()}\n"
tool_description += "Columns:\n"
# Add column documentation and types
if table in schema:
for col_name, col_type in schema[table].items():
col_doc = metadata.COLUMN_DOCS.get(table, {}).get(col_name, "No documentation available")
tool_description += f" - {col_name}: {col_type}: {col_doc}\n"
#tool_description += f" - {col_name}: {col_type}\n"
# Add source documentation
#tool_description += "\n\nSource IDs:\n"
#for source_id, descrip in metadata.SOURCE_IDS.items():
# tool_description += f"- {source_id}: {descrip}\n"
@smolagents.tool
def sql_tool(query: str) -> str:
"""Description to be set beloiw...
Args:
query: The query to perform. This should be correct SQL.
"""
output = ""
with db.get_engine().connect() as con:
rows = con.execute(sqlalchemy.text(query))
for row in rows:
output += "\n" + str(row)
return output
sql_tool.description = tool_description
#
# language models
#
default_model = smolagents.HfApiModel()
mistral_api_key = os.environ["MISTRAL_API_KEY"]
mistral_model_id = "mistral/codestral-latest"
mistral_model = smolagents.LiteLLMModel(
model_id=mistral_model_id,
api_key=mistral_api_key,
temperature=0.0
)
#
# Define the agent
#
agent = smolagents.CodeAgent(
tools=[sql_tool],
model=mistral_model
)
#
# Handler to extract the response's content
#
from typing import Union, Any
from dataclasses import is_dataclass
import json
class ResponseHandler:
@staticmethod
def extract_content(response: Any) -> str:
"""
Extract content from various types of agent responses.
Args:
response: The response from the agent, could be string, Message object, or dict
Returns:
str: The extracted content
"""
# If it's already a string, return it
if isinstance(response, str):
return response
# If it's a Message object
if hasattr(response, 'content') and isinstance(response.content, str):
return response.content
# If it's a dictionary (e.g., from json.loads())
if isinstance(response, dict) and 'content' in response:
return response['content']
# If it's a dataclass
if is_dataclass(response):
if hasattr(response, 'content'):
return response.content
# If it's JSON string
if isinstance(response, str):
try:
parsed = json.loads(response)
if isinstance(parsed, dict) and 'content' in parsed:
return parsed['content']
except json.JSONDecodeError:
pass
# If we can't determine the type, return the string representation
return str(response)
handler = ResponseHandler()
def generate_response(query: str) -> str:
"""Generate a response given query.
Args:
- query: the question from the user
Returns:
- the response from the agent having access to a database over the ICIJ
data and a large language model.
"""
agent_output = agent.run(query)
# At times, the response appears to be a class instance with a 'content'
# part. Hence, we will pass the agent's response to some handler that will
# extract the response's content.
return handler.extract_content(agent_output)
#
# User interface
#
with gr.Blocks() as demo:
gr.Markdown("""
# SQL agent
Database: ICIJ data on offshore financial data leaks. Very early "fast" prorotyping.
""")
# Inputs: question
question = gr.Textbox(
label="Question to answer",
placeholder=""
)
# Response
response = gr.Textbox(
label="Response",
placeholder=""
)
# Button
with gr.Row():
response_button = gr.Button("Submit", variant='primary')
clear_button = gr.Button("Clear", variant='secondary')
# Example questions given default provided PDF file
with gr.Accordion("Sample questions", open=False):
gr.Examples(
[
[
(
"Can you list the entities with an address in Canada? "
"Please give the name of the entity an its address."
),
],
[
"Are there any entities located on Montreal, Canada?",
]
],
inputs=[question,],
outputs=[response,],
fn=generate_response,
cache_examples=False,
label="Sample questions"
)
# Documentation
with gr.Accordion("Documentation", open=False):
gr.Markdown("""
- Agentic framework: smolagents
- Data: icij.org
- Database: SQLite, SQLAlchemy
- Generation: Mistral
- Examples: Generated using Claude.ai
""")
# Click actions
response_button.click(
fn=generate_response,
inputs=[question,],
outputs=[response,]
)
clear_button.click(
fn=lambda: ('', ''),
inputs=[],
outputs=[question, response]
)
demo.launch(show_api=False) |