Spaces:
Sleeping
Sleeping
from sklearn.metrics.pairwise import cosine_similarity | |
import pandas as pd | |
import numpy as np | |
from vectorization import spotify_data | |
import json | |
import gradio as gr | |
from gradio.components import Textbox | |
from ast import literal_eval | |
spotify_data_processed = pd.read_csv('C:\\Users\\34640\\Desktop\\Saturdays.ai\\spotify_dset\\dataset_modificado.csv') | |
def convert_string_to_array(str_vector): | |
# Si str_vector ya es un array de NumPy, devolverlo directamente | |
if isinstance(str_vector, np.ndarray): | |
return str_vector | |
try: | |
cleaned_str = str_vector.replace('[', '').replace(']', '').replace('\n', ' ').replace('\r', '').strip() | |
vector_elements = [float(item) for item in cleaned_str.split()] | |
return np.array(vector_elements) | |
except ValueError as e: | |
print("Error:", e) | |
return np.zeros((100,)) | |
spotify_data_processed['song_vector'] = spotify_data_processed['song_vector'].apply(convert_string_to_array) | |
# Aplicar la función a las primeras filas para ver los resultados | |
sample_data = spotify_data_processed['song_vector'].head() | |
converted_vectors = sample_data.apply(convert_string_to_array) | |
print(converted_vectors) | |
def recommend_song(song_name, artist_name, spotify_data_processed, top_n=4): | |
# Filtrar para encontrar la canción específica | |
specific_song = spotify_data_processed[(spotify_data_processed['song'] == song_name) | |
& (spotify_data_processed['artist'] == artist_name)] | |
# Verificar si la canción existe en el dataset | |
if specific_song.empty: | |
return pd.DataFrame({"Error": ["Canción no encontrada en la base de datos."]}) | |
# Obtener el vector de la canción específica | |
song_vec = specific_song['song_vector'].iloc[0] | |
# Asegurarte de que song_vec sea un array de NumPy | |
if isinstance(song_vec, str): | |
song_vec = convert_string_to_array(song_vec) | |
all_song_vectors = np.array(spotify_data_processed['song_vector'].tolist()) | |
# Calcular similitudes | |
similarities = cosine_similarity([song_vec], all_song_vectors)[0] | |
# Obtener los índices de las canciones más similares | |
top_indices = np.argsort(similarities)[::-1][1:top_n+1] | |
# Devolver los nombres y artistas de las canciones más similares | |
recommended_songs = spotify_data_processed.iloc[top_indices][['song', 'artist']] | |
return recommended_songs | |
def recommend_song_interface(song_name, artist_name): | |
recommendations_df = recommend_song(song_name, artist_name, spotify_data_processed) | |
# Verificar si el DataFrame está vacío o si las columnas necesarias están presentes | |
if isinstance(recommendations_df, pd.DataFrame) and not recommendations_df.empty and {'song', 'artist'}.issubset(recommendations_df.columns): | |
recommendations_list = recommendations_df[['song', 'artist']].values.tolist() | |
formatted_recommendations = ["{} by {}".format(song, artist) for song, artist in recommendations_list] | |
# Rellenar con cadenas vacías si hay menos de 4 recomendaciones | |
while len(formatted_recommendations) < 4: | |
formatted_recommendations.append("") | |
return formatted_recommendations[:4] | |
else: | |
random_song = spotify_data_processed.sample() # Escoge una linea la azar de todo el conjunto de datos .sample() | |
random_song_name = random_song['song'].iloc[0] # Extrae el valor de la columna song de la fila sample (Nombre) | |
random_artist_name = random_song['artist'].iloc[0] # Extrae el valor de la columna artist de la fila sample (Nombre) | |
# Obtener recomendaciones para la canción aleatoria | |
random_recommendations_df = recommend_song(random_song_name, random_artist_name, spotify_data_processed) | |
random_recommendations_list = random_recommendations_df[['song', 'artist']].values.tolist() | |
formatted_random_recommendations = ["{} by {}".format(song, artist) for song, artist in random_recommendations_list] | |
# Rellenar con cadenas vacías si hay menos de 4 recomendaciones | |
while len(formatted_random_recommendations) < 4: | |
formatted_random_recommendations.append("") | |
return formatted_random_recommendations[:4] | |
# Ejemplo de uso | |
# Asegúrate de que spotify_data_processed es un DataFrame de Pandas válido con las columnas 'song' y 'artist' | |
recommendations = recommend_song_interface("song_name", "artist_name") | |