Spaces:
Sleeping
Sleeping
Commit
路
40553d3
1
Parent(s):
3629f8b
Update app.py
Browse files
app.py
CHANGED
@@ -1,111 +1,61 @@
|
|
1 |
-
from
|
2 |
-
import pandas as pd
|
3 |
-
import numpy as np
|
4 |
-
from vectorization import spotify_data
|
5 |
-
import json
|
6 |
import gradio as gr
|
7 |
-
|
8 |
-
from ast import literal_eval
|
9 |
-
spotify_data_processed = pd.read_csv('dataset_modificado.csv')
|
10 |
|
11 |
-
def convert_string_to_array(str_vector):
|
12 |
-
# Si str_vector ya es un array de NumPy, devolverlo directamente
|
13 |
-
if isinstance(str_vector, np.ndarray):
|
14 |
-
return str_vector
|
15 |
|
16 |
-
try:
|
17 |
-
cleaned_str = str_vector.replace('[', '').replace(']', '').replace('\n', ' ').replace('\r', '').strip()
|
18 |
-
vector_elements = [float(item) for item in cleaned_str.split()]
|
19 |
-
return np.array(vector_elements)
|
20 |
-
except ValueError as e:
|
21 |
-
print("Error:", e)
|
22 |
-
return np.zeros((100,))
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
-
|
|
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
print(converted_vectors)
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
def recommend_song(song_name, artist_name, spotify_data_processed, top_n=4):
|
36 |
-
# Filtrar para encontrar la canci贸n espec铆fica
|
37 |
-
specific_song = spotify_data_processed[(spotify_data_processed['song'] == song_name)
|
38 |
-
& (spotify_data_processed['artist'] == artist_name)]
|
39 |
-
|
40 |
-
# Verificar si la canci贸n existe en el dataset
|
41 |
-
if specific_song.empty:
|
42 |
-
return pd.DataFrame({"Error": ["Canci贸n no encontrada en la base de datos."]})
|
43 |
-
|
44 |
-
|
45 |
-
# Obtener el vector de la canci贸n espec铆fica
|
46 |
-
song_vec = specific_song['song_vector'].iloc[0]
|
47 |
-
|
48 |
-
# Asegurarte de que song_vec sea un array de NumPy
|
49 |
-
if isinstance(song_vec, str):
|
50 |
-
song_vec = convert_string_to_array(song_vec)
|
51 |
-
|
52 |
-
all_song_vectors = np.array(spotify_data_processed['song_vector'].tolist())
|
53 |
-
|
54 |
-
# Calcular similitudes
|
55 |
-
similarities = cosine_similarity([song_vec], all_song_vectors)[0]
|
56 |
-
|
57 |
-
# Obtener los 铆ndices de las canciones m谩s similares
|
58 |
-
top_indices = np.argsort(similarities)[::-1][1:top_n+1]
|
59 |
-
|
60 |
-
# Devolver los nombres y artistas de las canciones m谩s similares
|
61 |
-
recommended_songs = spotify_data_processed.iloc[top_indices][['song', 'artist']]
|
62 |
-
return recommended_songs
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
def recommend_song_interface(song_name, artist_name):
|
70 |
-
recommendations_df = recommend_song(song_name, artist_name, spotify_data_processed)
|
71 |
-
|
72 |
-
if isinstance(recommendations_df, pd.DataFrame) and not recommendations_df.empty and {'song', 'artist'}.issubset(recommendations_df.columns):
|
73 |
-
recommendations_list = recommendations_df[['song', 'artist']].values.tolist()
|
74 |
-
formatted_recommendations = ["{} by {}".format(song, artist) for song, artist in recommendations_list]
|
75 |
-
while len(formatted_recommendations) < 4:
|
76 |
-
formatted_recommendations.append("")
|
77 |
-
return formatted_recommendations[:4]
|
78 |
else:
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
#
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
|
|
|
|
|
|
97 |
iface = gr.Interface(
|
98 |
-
fn=
|
99 |
inputs=[
|
100 |
gr.Textbox(placeholder="Ingrese el t铆tulo de la canci贸n", label="T铆tulo de la Canci贸n"),
|
101 |
gr.Textbox(placeholder="Ingrese el nombre del artista", label="Nombre del Artista")
|
102 |
],
|
103 |
-
outputs=[gr.
|
104 |
-
gr.
|
105 |
-
gr.
|
106 |
-
gr.
|
107 |
-
title="Recomendador de Canciones",
|
108 |
-
description="Ingrese el t铆tulo de una canci贸n y el nombre del artista
|
109 |
theme="dark", # Comenta o elimina si el tema oscuro no est谩 disponible
|
110 |
css="""
|
111 |
body {font-family: Arial, sans-serif;}
|
@@ -115,4 +65,3 @@ iface = gr.Interface(
|
|
115 |
)
|
116 |
|
117 |
iface.launch()
|
118 |
-
|
|
|
1 |
+
from Recomendation import recommend_song_interface
|
|
|
|
|
|
|
|
|
2 |
import gradio as gr
|
3 |
+
import requests
|
|
|
|
|
4 |
|
|
|
|
|
|
|
|
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
+
def search_youtube(song, artist, api_key):
|
8 |
+
query = f"{song} by {artist}"
|
9 |
+
search_url = "https://www.googleapis.com/youtube/v3/search"
|
10 |
+
params = {
|
11 |
+
'part': 'snippet',
|
12 |
+
'q': query,
|
13 |
+
'type': 'video',
|
14 |
+
'maxResults': 1,
|
15 |
+
'key': api_key
|
16 |
+
}
|
17 |
|
18 |
+
response = requests.get(search_url, params=params)
|
19 |
+
response_json = response.json()
|
20 |
|
21 |
+
if 'items' in response_json and response_json['items']:
|
22 |
+
video_id = response_json['items'][0]['id']['videoId']
|
23 |
+
youtube_link = f"https://www.youtube.com/watch?v={video_id}"
|
24 |
+
return youtube_link
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
else:
|
26 |
+
return "No se encontraron resultados."
|
27 |
+
|
28 |
+
def add_youtube_links(recommendations, api_key):
|
29 |
+
recommendations_with_links = []
|
30 |
+
for recommendation in recommendations:
|
31 |
+
if recommendation: # Si la recomendaci贸n no es una cadena vac铆a
|
32 |
+
song, artist = recommendation.split(" by ")
|
33 |
+
youtube_link = search_youtube(song, artist, api_key)
|
34 |
+
recommendations_with_links.append(f"{recommendation} - YouTube Link: {youtube_link}")
|
35 |
+
else:
|
36 |
+
recommendations_with_links.append("")
|
37 |
+
|
38 |
+
return recommendations_with_links
|
39 |
+
|
40 |
+
def recommend_with_youtube_links(song_name, artist_name):
|
41 |
+
api_key = "AIzaSyAnFiRh8g13HW_wLhUW7wZwRE2SsPo0aJs"
|
42 |
+
recommendations = recommend_song_interface(song_name, artist_name)
|
43 |
+
recommendations_with_links = add_youtube_links(recommendations, api_key)
|
44 |
+
return recommendations_with_links
|
45 |
+
|
46 |
+
# Configuraci贸n de la interfaz Gradio
|
47 |
iface = gr.Interface(
|
48 |
+
fn=recommend_with_youtube_links,
|
49 |
inputs=[
|
50 |
gr.Textbox(placeholder="Ingrese el t铆tulo de la canci贸n", label="T铆tulo de la Canci贸n"),
|
51 |
gr.Textbox(placeholder="Ingrese el nombre del artista", label="Nombre del Artista")
|
52 |
],
|
53 |
+
outputs=[gr.HTML(label="Recomendaci贸n 1"),
|
54 |
+
gr.HTML(label="Recomendaci贸n 2"),
|
55 |
+
gr.HTML(label="Recomendaci贸n 3"),
|
56 |
+
gr.HTML(label="Recomendaci贸n 4")],
|
57 |
+
title="Recomendador de Canciones con Enlaces de YouTube",
|
58 |
+
description="Ingrese el t铆tulo de una canci贸n y el nombre del artista.",
|
59 |
theme="dark", # Comenta o elimina si el tema oscuro no est谩 disponible
|
60 |
css="""
|
61 |
body {font-family: Arial, sans-serif;}
|
|
|
65 |
)
|
66 |
|
67 |
iface.launch()
|
|