diegulio
🐢🧑🐱
a4fd57a
raw
history blame
1.33 kB
import torch
import gradio as gr
from app.model import PetClassificationModel
from app.backbone import Backbone
from app.config import CFG
from torchvision import transforms
# Load model
backbone = Backbone(CFG.MODEL, len(CFG.idx_to_class), pretrained = CFG.PRETRAINED)
model = PetClassificationModel(base_model = backbone.model, config = CFG)
model.load_state_dict(torch.load('models/best_model.pt'))
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Eval mode
model.eval()
model.to(device)
pred_transforms = transforms.Compose([
transforms.Resize(CFG.IMG_SIZE),
transforms.ToTensor(),
])
def predict(x):
x = pred_transforms(x).unsqueeze(0) # transform and batched
x = x.to(device)
with torch.no_grad():
prediction = torch.nn.functional.softmax(model(x)[0], dim=0)
confidences = {CFG.idx_to_class[i]: float(prediction[i]) for i in range(len(CFG.idx_to_class))}
return confidences
gr.Interface(fn=predict,
title = "Breed Classifier 🐢🧑🐱",
description = "Clasifica una imagen entre: 120 razas, gato o ninguno!",
inputs=gr.Image(type="pil"),
outputs=gr.Label(num_top_classes=5),
examples=["statics/pug.jpg", "statics/poodle.jpg", "statics/cat.jpg", "statics/no.jpg"]).launch()