UI updated
Browse files- app.py +109 -60
- styles/detectiveMag.svg +2 -2
- styles/robot.png +0 -0
- styles/style.css +62 -62
app.py
CHANGED
@@ -1,4 +1,6 @@
|
|
1 |
# imports
|
|
|
|
|
2 |
import streamlit as st
|
3 |
import tensorflow as tf
|
4 |
from tensorflow.keras.models import Sequential
|
@@ -24,6 +26,7 @@ st.markdown(
|
|
24 |
unsafe_allow_html=True
|
25 |
)
|
26 |
|
|
|
27 |
@st.cache_resource
|
28 |
def load_models():
|
29 |
# Load all models at once
|
@@ -36,7 +39,6 @@ def load_models():
|
|
36 |
eff_net_model, eff_net_art_model, cnn_model = load_models()
|
37 |
|
38 |
# CNN model
|
39 |
-
|
40 |
def run_cnn(img_arr):
|
41 |
my_model = Sequential()
|
42 |
my_model.add(Conv2D(
|
@@ -70,6 +72,7 @@ def run_cnn(img_arr):
|
|
70 |
prediction = my_model.predict(img_arr)
|
71 |
return prediction
|
72 |
|
|
|
73 |
def run_effNet(img_arr):
|
74 |
try:
|
75 |
resolver = tf.distribute.cluster_resolver.TPUClusterResolver()
|
@@ -82,6 +85,7 @@ def run_effNet(img_arr):
|
|
82 |
prediction = eff_net_model.predict(img_arr)
|
83 |
return prediction
|
84 |
|
|
|
85 |
def run_effNet_Art(img_arr):
|
86 |
try:
|
87 |
resolver = tf.distribute.cluster_resolver.TPUClusterResolver()
|
@@ -94,13 +98,14 @@ def run_effNet_Art(img_arr):
|
|
94 |
prediction = eff_net_art_model.predict(img_arr)
|
95 |
return prediction
|
96 |
|
|
|
97 |
def pre_process_img_effNet(image):
|
98 |
img = load_img(image, target_size=(300, 300)) # Resize image to model input size
|
99 |
img_arr = img_to_array(img) # Convert to array
|
100 |
img_arr = np.expand_dims(img_arr, axis=0) # Add batch dimension
|
101 |
result = run_effNet(img_arr)
|
102 |
return result
|
103 |
-
|
104 |
def pre_process_img_effNetArt(image):
|
105 |
img = load_img(image, target_size=(224, 224)) # Resize image to model input size
|
106 |
img_arr = img_to_array(img) # Convert to array
|
@@ -116,66 +121,110 @@ def pre_process_img(image):
|
|
116 |
img_arr = img_arr.reshape((1, 256, 256, 3)) # Add batch dimension
|
117 |
result = run_cnn(img_arr)
|
118 |
return result
|
119 |
-
# title
|
120 |
-
st.markdown(
|
121 |
-
"""<p class = "title"> AI vs REAL Image Detection </p>""",
|
122 |
-
unsafe_allow_html= True
|
123 |
-
)
|
124 |
-
|
125 |
-
# upload image
|
126 |
-
st.markdown(
|
127 |
-
"""<p class = "upload_line"> Please upload the image </p>""",
|
128 |
-
unsafe_allow_html= True
|
129 |
-
)
|
130 |
-
|
131 |
-
# introduce states
|
132 |
-
if "prev_image" not in st.session_state:
|
133 |
-
st.session_state.prev_image = None
|
134 |
-
if "reset_model" not in st.session_state:
|
135 |
-
st.session_state.reset_model = False
|
136 |
-
if "model_key" not in st.session_state:
|
137 |
-
st.session_state.model_key = "default_model_key"
|
138 |
-
|
139 |
-
user_image = st.file_uploader("png, jpg, or jpeg image", ['png', 'jpg', 'jpeg'], label_visibility='hidden')
|
140 |
-
if user_image != st.session_state.prev_image:
|
141 |
-
if st.session_state.prev_image is not None:
|
142 |
-
st.session_state.model_key = "reset_model_key" if st.session_state.model_key == "default_model_key" else "default_model_key"
|
143 |
-
st.session_state.reset_model = True
|
144 |
-
st.session_state.prev_image = user_image # set prev image to current image
|
145 |
-
|
146 |
-
model_name = st.selectbox(
|
147 |
-
'Choose a model',
|
148 |
-
['CNN', 'Efficientnet', 'Efficientnet Art'],
|
149 |
-
index=None,
|
150 |
-
placeholder='choose an option',
|
151 |
-
key=st.session_state.model_key
|
152 |
-
)
|
153 |
-
result_placeholder = st.empty()
|
154 |
-
|
155 |
-
# design animation elements
|
156 |
-
with open("styles/detectiveMag.svg", "r") as file:
|
157 |
-
svg_content_detective_Mag = file.read()
|
158 |
|
159 |
-
# First magnifying glass starts at bottom-right
|
160 |
-
st.markdown(
|
161 |
-
f"<div class='detectiveMag1' style='bottom: 0%; right: 0%;'>{svg_content_detective_Mag}</div>",
|
162 |
-
unsafe_allow_html=True
|
163 |
-
)
|
164 |
-
|
165 |
-
# Second magnifying glass starts slightly higher up the diagonal
|
166 |
-
st.markdown(
|
167 |
-
f"<div class='detectiveMag2' style='bottom: 10%; right: 10%;'>{svg_content_detective_Mag}</div>",
|
168 |
-
unsafe_allow_html=True
|
169 |
-
)
|
170 |
|
171 |
-
#
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
|
177 |
if user_image is not None and model_name is not None:
|
178 |
predictions = []
|
|
|
179 |
if model_name == 'CNN':
|
180 |
print('CNN is running')
|
181 |
predictions = pre_process_img(user_image)
|
@@ -187,14 +236,14 @@ if user_image is not None and model_name is not None:
|
|
187 |
predictions = pre_process_img_effNetArt(user_image)
|
188 |
|
189 |
if predictions[0] < 0.5:
|
190 |
-
result_word = "
|
191 |
else:
|
192 |
result_word = "REAL"
|
193 |
|
|
|
194 |
if user_image is not None:
|
195 |
if len(predictions) > 0:
|
196 |
-
result_placeholder.markdown(f"<div class='result'> <span class = 'prediction'>Prediction: {predictions[0][0]}</span> <br> It is a <span class = resultword> {result_word} </span> image. </div>", unsafe_allow_html=True)
|
197 |
-
|
198 |
|
199 |
print(model_name)
|
200 |
print(predictions[0])
|
|
|
1 |
# imports
|
2 |
+
import base64
|
3 |
+
import os
|
4 |
import streamlit as st
|
5 |
import tensorflow as tf
|
6 |
from tensorflow.keras.models import Sequential
|
|
|
26 |
unsafe_allow_html=True
|
27 |
)
|
28 |
|
29 |
+
# load model weights
|
30 |
@st.cache_resource
|
31 |
def load_models():
|
32 |
# Load all models at once
|
|
|
39 |
eff_net_model, eff_net_art_model, cnn_model = load_models()
|
40 |
|
41 |
# CNN model
|
|
|
42 |
def run_cnn(img_arr):
|
43 |
my_model = Sequential()
|
44 |
my_model.add(Conv2D(
|
|
|
72 |
prediction = my_model.predict(img_arr)
|
73 |
return prediction
|
74 |
|
75 |
+
# efficientnet model
|
76 |
def run_effNet(img_arr):
|
77 |
try:
|
78 |
resolver = tf.distribute.cluster_resolver.TPUClusterResolver()
|
|
|
85 |
prediction = eff_net_model.predict(img_arr)
|
86 |
return prediction
|
87 |
|
88 |
+
# efficientnet art model
|
89 |
def run_effNet_Art(img_arr):
|
90 |
try:
|
91 |
resolver = tf.distribute.cluster_resolver.TPUClusterResolver()
|
|
|
98 |
prediction = eff_net_art_model.predict(img_arr)
|
99 |
return prediction
|
100 |
|
101 |
+
# preprocess images for efficient net
|
102 |
def pre_process_img_effNet(image):
|
103 |
img = load_img(image, target_size=(300, 300)) # Resize image to model input size
|
104 |
img_arr = img_to_array(img) # Convert to array
|
105 |
img_arr = np.expand_dims(img_arr, axis=0) # Add batch dimension
|
106 |
result = run_effNet(img_arr)
|
107 |
return result
|
108 |
+
# preprocess images for efficient net art
|
109 |
def pre_process_img_effNetArt(image):
|
110 |
img = load_img(image, target_size=(224, 224)) # Resize image to model input size
|
111 |
img_arr = img_to_array(img) # Convert to array
|
|
|
121 |
img_arr = img_arr.reshape((1, 256, 256, 3)) # Add batch dimension
|
122 |
result = run_cnn(img_arr)
|
123 |
return result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
|
126 |
+
#UI
|
127 |
+
|
128 |
+
#title
|
129 |
+
col1, col2, col3,col4, col5 = st.columns([4,1,3,3,1], gap="small")
|
130 |
+
|
131 |
+
# In the first column, display the image
|
132 |
+
with col1:
|
133 |
+
st.write('')
|
134 |
+
with col2:
|
135 |
+
st.image("styles/robot.png")
|
136 |
+
|
137 |
+
# In the second column, display the text
|
138 |
+
with col3:
|
139 |
+
st.markdown(
|
140 |
+
"""
|
141 |
+
<p class="title"> AI vs REAL Image Detection </p>
|
142 |
+
""",
|
143 |
+
unsafe_allow_html=True
|
144 |
+
)
|
145 |
+
with col4:
|
146 |
+
st.write('')
|
147 |
+
with col5:
|
148 |
+
st.write('')
|
149 |
+
|
150 |
+
# division between photo and other widget component
|
151 |
+
main_col_one, main_col_two = st.columns([2,2], gap="large")
|
152 |
+
#photo column
|
153 |
+
with main_col_one:
|
154 |
+
# Create a placeholder for the image
|
155 |
+
image_placeholder = st.empty()
|
156 |
+
|
157 |
+
with main_col_two:
|
158 |
+
with open("styles/detectiveMag.svg", "r") as file:
|
159 |
+
svg_content_detective_Mag = file.read()
|
160 |
+
|
161 |
+
#alignment between magnifying glass image and upload line
|
162 |
+
col1, col2, col3,col4 = st.columns([4,4,1,3], gap="small")
|
163 |
+
with col1:
|
164 |
+
st.write('')
|
165 |
+
with col2:
|
166 |
+
st.markdown(
|
167 |
+
"""<p class = "upload_line"> Please upload the image </p>""",
|
168 |
+
unsafe_allow_html= True
|
169 |
+
)
|
170 |
+
with col3:
|
171 |
+
st.markdown(
|
172 |
+
f"<div class='detectiveMag1' style='bottom: 0%; right: 0%;'>{svg_content_detective_Mag}</div>",
|
173 |
+
unsafe_allow_html=True
|
174 |
+
)
|
175 |
+
with col4:
|
176 |
+
st.write('')
|
177 |
+
|
178 |
+
|
179 |
+
|
180 |
+
# introduce states
|
181 |
+
if "prev_image" not in st.session_state:
|
182 |
+
st.session_state.prev_image = None
|
183 |
+
if "reset_model" not in st.session_state:
|
184 |
+
st.session_state.reset_model = False
|
185 |
+
if "model_key" not in st.session_state:
|
186 |
+
st.session_state.model_key = "default_model_key"
|
187 |
+
|
188 |
+
|
189 |
+
|
190 |
+
# Upload image widget
|
191 |
+
user_image = st.file_uploader("png, jpg, or jpeg image", ['png', 'jpg', 'jpeg'], label_visibility='hidden')
|
192 |
+
|
193 |
+
if user_image:
|
194 |
+
# Convert the image to base64 encoding
|
195 |
+
image_bytes = user_image.read()
|
196 |
+
image_base64 = base64.b64encode(image_bytes).decode('utf-8')
|
197 |
+
|
198 |
+
# Display the image centered using HTML
|
199 |
+
image_placeholder.markdown(
|
200 |
+
f'<div style="display: flex; justify-content: center;">'
|
201 |
+
f'<img src="data:image/jpeg;base64,{image_base64}" max-width:"100%" height:"auto"/>'
|
202 |
+
f'</div>',
|
203 |
+
unsafe_allow_html=True
|
204 |
+
)
|
205 |
+
|
206 |
+
# model name select box widget reset condition. reset model name when a new image is uploaded
|
207 |
+
if user_image != st.session_state.prev_image:
|
208 |
+
if st.session_state.prev_image is not None:
|
209 |
+
st.session_state.model_key = "reset_model_key" if st.session_state.model_key == "default_model_key" else "default_model_key"
|
210 |
+
st.session_state.reset_model = True
|
211 |
+
st.session_state.prev_image = user_image # set prev image to current image
|
212 |
+
|
213 |
+
# model name select box widget
|
214 |
+
model_name = st.selectbox(
|
215 |
+
'Choose a model',
|
216 |
+
['CNN', 'Efficientnet', 'Efficientnet Art'],
|
217 |
+
index=None,
|
218 |
+
placeholder='choose an option',
|
219 |
+
key=st.session_state.model_key
|
220 |
+
)
|
221 |
+
|
222 |
+
# placeholder to display result
|
223 |
+
result_placeholder = st.empty()
|
224 |
|
225 |
if user_image is not None and model_name is not None:
|
226 |
predictions = []
|
227 |
+
# preprocess image and run the user selected model
|
228 |
if model_name == 'CNN':
|
229 |
print('CNN is running')
|
230 |
predictions = pre_process_img(user_image)
|
|
|
236 |
predictions = pre_process_img_effNetArt(user_image)
|
237 |
|
238 |
if predictions[0] < 0.5:
|
239 |
+
result_word = "AI Generated"
|
240 |
else:
|
241 |
result_word = "REAL"
|
242 |
|
243 |
+
# display the result and the prediction
|
244 |
if user_image is not None:
|
245 |
if len(predictions) > 0:
|
246 |
+
result_placeholder.markdown(f"<div class='result'> <span class = 'prediction'>Prediction: {predictions[0][0]:.2%}</span> <br> It is a <span class = resultword> {result_word} </span> image. </div>", unsafe_allow_html=True)
|
|
|
247 |
|
248 |
print(model_name)
|
249 |
print(predictions[0])
|
styles/detectiveMag.svg
CHANGED
styles/robot.png
ADDED
styles/style.css
CHANGED
@@ -1,8 +1,9 @@
|
|
1 |
/* Reset and global styles */
|
2 |
* {
|
3 |
-
margin: 0;
|
4 |
box-sizing: border-box;
|
5 |
-
background-color: #001220 !important;
|
|
|
|
|
6 |
}
|
7 |
|
8 |
html,
|
@@ -16,12 +17,24 @@ body {
|
|
16 |
/* Title Styling */
|
17 |
.title {
|
18 |
font-family: "Segoe UI", Tahoma, Geneva, Verdana, sans-serif;
|
19 |
-
font-size:
|
20 |
text-align: center;
|
21 |
-
background: linear-gradient(to right, #
|
22 |
-webkit-background-clip: text;
|
23 |
-webkit-text-fill-color: transparent;
|
24 |
-
margin: 0 !important;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
}
|
26 |
|
27 |
/* Upload Line */
|
@@ -32,6 +45,31 @@ body {
|
|
32 |
color: white;
|
33 |
margin: 1em 0;
|
34 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
@keyframes blink {
|
36 |
25% {
|
37 |
opacity: 0.5;
|
@@ -44,23 +82,13 @@ body {
|
|
44 |
}
|
45 |
}
|
46 |
/* Base styles for magnifying glasses */
|
47 |
-
.detectiveMag1
|
48 |
-
.detectiveMag2,
|
49 |
-
.detectiveMag3 {
|
50 |
-
position: fixed;
|
51 |
width: 10vw;
|
52 |
max-width: 100px;
|
53 |
max-height: 100px;
|
54 |
animation: blink 6s infinite linear;
|
55 |
}
|
56 |
|
57 |
-
.detectiveMag2 {
|
58 |
-
animation-delay: 2s;
|
59 |
-
}
|
60 |
-
|
61 |
-
.detectiveMag3 {
|
62 |
-
animation-delay: 4s;
|
63 |
-
}
|
64 |
|
65 |
/* Result Styling */
|
66 |
.result {
|
@@ -76,10 +104,10 @@ body {
|
|
76 |
text-transform: uppercase;
|
77 |
background-image: linear-gradient(
|
78 |
-225deg,
|
79 |
-
#
|
80 |
-
#
|
81 |
-
#
|
82 |
-
#
|
83 |
);
|
84 |
background-size: auto auto;
|
85 |
background-clip: border-box;
|
@@ -115,43 +143,19 @@ body {
|
|
115 |
.upload_line {
|
116 |
font-size: 0.9rem;
|
117 |
}
|
118 |
-
|
119 |
-
.detectiveMag1,
|
120 |
-
.detectiveMag2,
|
121 |
-
.detectiveMag3 {
|
122 |
-
width: 12vw; /* Slightly larger magnifying glasses */
|
123 |
-
}
|
124 |
-
|
125 |
.result {
|
126 |
font-size: 1.2rem;
|
127 |
}
|
128 |
}
|
129 |
|
130 |
-
@media (max-width: 924px) {
|
131 |
-
.detectiveMag1,
|
132 |
-
.detectiveMag2,
|
133 |
-
.detectiveMag3 {
|
134 |
-
width: 10vw; /* Larger magnifying glasses */
|
135 |
-
background-color: transparent !important;
|
136 |
-
}
|
137 |
-
}
|
138 |
-
|
139 |
@media (max-width: 768px) {
|
140 |
.title {
|
141 |
font-size: 1.5em;
|
142 |
}
|
143 |
-
|
144 |
.upload_line {
|
145 |
font-size: 0.8rem;
|
146 |
}
|
147 |
|
148 |
-
.detectiveMag1,
|
149 |
-
.detectiveMag2,
|
150 |
-
.detectiveMag3 {
|
151 |
-
width: 15vw; /* Larger magnifying glasses */
|
152 |
-
background-color: transparent !important;
|
153 |
-
}
|
154 |
-
|
155 |
.result {
|
156 |
font-size: 1rem;
|
157 |
}
|
@@ -159,27 +163,23 @@ body {
|
|
159 |
|
160 |
@media (max-width: 480px) {
|
161 |
.title {
|
162 |
-
font-size:
|
163 |
-
}
|
164 |
-
.upload_line {
|
165 |
-
font-size: 0.7rem;
|
166 |
-
}
|
167 |
-
|
168 |
-
.detectiveMag1,
|
169 |
-
.detectiveMag2,
|
170 |
-
.detectiveMag3 {
|
171 |
-
width: 20vw; /* Even larger magnifying glasses */
|
172 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
|
174 |
.result {
|
175 |
font-size: 0.9rem;
|
176 |
}
|
177 |
}
|
178 |
-
|
179 |
-
@media (max-width: 390px) {
|
180 |
-
.detectiveMag1,
|
181 |
-
.detectiveMag2,
|
182 |
-
.detectiveMag3 {
|
183 |
-
visibility: hidden;
|
184 |
-
}
|
185 |
-
}
|
|
|
1 |
/* Reset and global styles */
|
2 |
* {
|
|
|
3 |
box-sizing: border-box;
|
4 |
+
/* background-color: #001220 !important; */
|
5 |
+
background-color:#0f0f31 !important;
|
6 |
+
|
7 |
}
|
8 |
|
9 |
html,
|
|
|
17 |
/* Title Styling */
|
18 |
.title {
|
19 |
font-family: "Segoe UI", Tahoma, Geneva, Verdana, sans-serif;
|
20 |
+
font-size: 32px; /* Scalable font size */
|
21 |
text-align: center;
|
22 |
+
background: linear-gradient(to right, #5af9fb 0%, #1C6DF3 100%);
|
23 |
-webkit-background-clip: text;
|
24 |
-webkit-text-fill-color: transparent;
|
25 |
+
margin-top: 0 !important;
|
26 |
+
|
27 |
+
}
|
28 |
+
/* robot image */
|
29 |
+
.st-emotion-cache-1xf0csu {
|
30 |
+
max-width: 55px !important;
|
31 |
+
}
|
32 |
+
|
33 |
+
/* main container */
|
34 |
+
.stMainBlockContainer {
|
35 |
+
padding-left: 5rem;
|
36 |
+
padding-right: 5rem;
|
37 |
+
max-width: 100%;
|
38 |
}
|
39 |
|
40 |
/* Upload Line */
|
|
|
45 |
color: white;
|
46 |
margin: 1em 0;
|
47 |
}
|
48 |
+
|
49 |
+
/* upload image widget customization */
|
50 |
+
.stFileUploader span, button {
|
51 |
+
color: white !important; /* Set the font color to white */
|
52 |
+
}
|
53 |
+
|
54 |
+
.stSelectbox label {
|
55 |
+
color: white;
|
56 |
+
}
|
57 |
+
.stSelectbox > div div {
|
58 |
+
color: white;
|
59 |
+
}
|
60 |
+
|
61 |
+
/* select box widget customization*/
|
62 |
+
.st-cf {
|
63 |
+
color: white !important;
|
64 |
+
}
|
65 |
+
|
66 |
+
.stSelectbox div[data-baseweb="select"] > div:first-child {
|
67 |
+
border-color: #2d408d;
|
68 |
+
}
|
69 |
+
.st-emotion-cache-sy3zga {
|
70 |
+
color: white !important;
|
71 |
+
}
|
72 |
+
|
73 |
@keyframes blink {
|
74 |
25% {
|
75 |
opacity: 0.5;
|
|
|
82 |
}
|
83 |
}
|
84 |
/* Base styles for magnifying glasses */
|
85 |
+
.detectiveMag1{
|
|
|
|
|
|
|
86 |
width: 10vw;
|
87 |
max-width: 100px;
|
88 |
max-height: 100px;
|
89 |
animation: blink 6s infinite linear;
|
90 |
}
|
91 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
/* Result Styling */
|
94 |
.result {
|
|
|
104 |
text-transform: uppercase;
|
105 |
background-image: linear-gradient(
|
106 |
-225deg,
|
107 |
+
#8ad8e6 0%,
|
108 |
+
#a438f2 29%,
|
109 |
+
#ff007f 67%,
|
110 |
+
#e8a7c8 100%
|
111 |
);
|
112 |
background-size: auto auto;
|
113 |
background-clip: border-box;
|
|
|
143 |
.upload_line {
|
144 |
font-size: 0.9rem;
|
145 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
.result {
|
147 |
font-size: 1.2rem;
|
148 |
}
|
149 |
}
|
150 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
@media (max-width: 768px) {
|
152 |
.title {
|
153 |
font-size: 1.5em;
|
154 |
}
|
|
|
155 |
.upload_line {
|
156 |
font-size: 0.8rem;
|
157 |
}
|
158 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
.result {
|
160 |
font-size: 1rem;
|
161 |
}
|
|
|
163 |
|
164 |
@media (max-width: 480px) {
|
165 |
.title {
|
166 |
+
font-size: 16px !important;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
}
|
168 |
+
/* robot image */
|
169 |
+
.st-emotion-cache-1xf0csu {
|
170 |
+
display: none;
|
171 |
+
}
|
172 |
+
.upload_line {
|
173 |
+
margin:0rem !important;
|
174 |
+
}
|
175 |
+
.detectiveMag1{
|
176 |
+
display: none;
|
177 |
+
}
|
178 |
+
.st-emotion-cache-ocqkz7 {
|
179 |
+
gap: 0 !important;
|
180 |
+
}
|
181 |
|
182 |
.result {
|
183 |
font-size: 0.9rem;
|
184 |
}
|
185 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|