File size: 11,567 Bytes
b5de3c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
# Copyright (c) 2024 Jaerin Lee

# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:

# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

import concurrent.futures
import time
from typing import Any, Callable, List, Literal, Tuple, Union

from PIL import Image
import numpy as np

import torch
import torch.nn.functional as F
import torch.cuda.amp as amp
import torchvision.transforms as T
import torchvision.transforms.functional as TF

from diffusers import (
    DiffusionPipeline,
    StableDiffusionPipeline,
    StableDiffusionXLPipeline,
)


def seed_everything(seed: int) -> None:
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = True


def load_model(
    model_key: str,
    sd_version: Literal['1.5', 'xl'],
    device: torch.device,
    dtype: torch.dtype,
) -> torch.nn.Module:
    if model_key.endswith('.safetensors'):
        if sd_version == '1.5':
            pipeline = StableDiffusionPipeline
        elif sd_version == 'xl':
            pipeline = StableDiffusionXLPipeline
        else:
            raise ValueError(f'Stable Diffusion version {sd_version} not supported.')
        return pipeline.from_single_file(model_key, torch_dtype=dtype).to(device)
    try:
        return DiffusionPipeline.from_pretrained(model_key, variant='fp16', torch_dtype=dtype).to(device)
    except:
        return DiffusionPipeline.from_pretrained(model_key, variant=None, torch_dtype=dtype).to(device)


def get_cutoff(cutoff: float = None, scale: float = None) -> float:
    if cutoff is not None:
        return cutoff

    if scale is not None and cutoff is None:
        return 0.5 / scale

    raise ValueError('Either one of `cutoff`, or `scale` should be specified.')


def get_scale(cutoff: float = None, scale: float = None) -> float:
    if scale is not None:
        return scale

    if cutoff is not None and scale is None:
        return 0.5 / cutoff

    raise ValueError('Either one of `cutoff`, or `scale` should be specified.')


def filter_2d_by_kernel_1d(x: torch.Tensor, k: torch.Tensor) -> torch.Tensor:
    assert len(k.shape) in (1,), 'Kernel size should be one of (1,).'
    #  assert len(k.shape) in (1, 2), 'Kernel size should be one of (1, 2).'

    b, c, h, w = x.shape
    ks = k.shape[-1]
    k = k.view(1, 1, -1).repeat(c, 1, 1)

    x = x.permute(0, 2, 1, 3)
    x = x.reshape(b * h, c, w)
    x = F.pad(x, (ks // 2, (ks - 1) // 2), mode='replicate')
    x = F.conv1d(x, k, groups=c)
    x = x.reshape(b, h, c, w).permute(0, 3, 2, 1).reshape(b * w, c, h)
    x = F.pad(x, (ks // 2, (ks - 1) // 2), mode='replicate')
    x = F.conv1d(x, k, groups=c)
    x = x.reshape(b, w, c, h).permute(0, 2, 3, 1)
    return x


def filter_2d_by_kernel_2d(x: torch.Tensor, k: torch.Tensor) -> torch.Tensor:
    assert len(k.shape) in (2, 3), 'Kernel size should be one of (2, 3).'

    x = F.pad(x, (
        k.shape[-2] // 2, (k.shape[-2] - 1) // 2,
        k.shape[-1] // 2, (k.shape[-1] - 1) // 2,
    ), mode='replicate')

    b, c, _, _ = x.shape
    if len(k.shape) == 2 or (len(k.shape) == 3 and k.shape[0] == 1):
        k = k.view(1, 1, *k.shape[-2:]).repeat(c, 1, 1, 1)
        x = F.conv2d(x, k, groups=c)
    elif len(k.shape) == 3:
        assert k.shape[0] == b, \
            'The number of kernels should match the batch size.'

        k = k.unsqueeze(1)
        x = F.conv2d(x.permute(1, 0, 2, 3), k, groups=b).permute(1, 0, 2, 3)
    return x


@amp.autocast(False)
def filter_by_kernel(
    x: torch.Tensor,
    k: torch.Tensor,
    is_batch: bool = False,
) -> torch.Tensor:
    k_dim = len(k.shape)
    if k_dim == 1 or k_dim == 2 and is_batch:
        return filter_2d_by_kernel_1d(x, k)
    elif k_dim == 2 or k_dim == 3 and is_batch:
        return filter_2d_by_kernel_2d(x, k)
    else:
        raise ValueError('Kernel size should be one of (1, 2, 3).')


def gen_gauss_lowpass_filter_2d(
    std: torch.Tensor,
    window_size: int = None,
) -> torch.Tensor:
    # Gaussian kernel size is odd in order to preserve the center.
    if window_size is None:
        window_size = (
            2 * int(np.ceil(3 * std.max().detach().cpu().numpy())) + 1)

    y = torch.arange(
        window_size, dtype=std.dtype, device=std.device
    ).view(-1, 1).repeat(1, window_size)
    grid = torch.stack((y.t(), y), dim=-1)
    grid -= 0.5 * (window_size - 1) # (W, W)
    var = (std * std).unsqueeze(-1).unsqueeze(-1)
    distsq = (grid * grid).sum(dim=-1).unsqueeze(0).repeat(*std.shape, 1, 1)
    k = torch.exp(-0.5 * distsq / var)
    k /= k.sum(dim=(-2, -1), keepdim=True)
    return k


def gaussian_lowpass(
    x: torch.Tensor,
    std: Union[float, Tuple[float], torch.Tensor] = None,
    cutoff: Union[float, torch.Tensor] = None,
    scale: Union[float, torch.Tensor] = None,
) -> torch.Tensor:
    if std is None:
        cutoff = get_cutoff(cutoff, scale)
        std = 0.5 / (np.pi * cutoff)
    if isinstance(std, (float, int)):
        std = (std, std)
    if isinstance(std, torch.Tensor):
        """Using nn.functional.conv2d with Gaussian kernels built in runtime is
        80% faster than transforms.functional.gaussian_blur for individual
        items.
        
        (in GPU); However, in CPU, the result is exactly opposite. But you
        won't gonna run this on CPU, right?
        """
        if len(list(s for s in std.shape if s != 1)) >= 2:
            raise NotImplementedError(
                'Anisotropic Gaussian filter is not currently available.')

        # k.shape == (B, W, W).
        k = gen_gauss_lowpass_filter_2d(std=std.view(-1))
        if k.shape[0] == 1:
            return filter_by_kernel(x, k[0], False)
        else:
            return filter_by_kernel(x, k, True)
    else:
        # Gaussian kernel size is odd in order to preserve the center.
        window_size = tuple(2 * int(np.ceil(3 * s)) + 1 for s in std)
        return TF.gaussian_blur(x, window_size, std)


def blend(
    fg: Union[torch.Tensor, Image.Image],
    bg: Union[torch.Tensor, Image.Image],
    mask: Union[torch.Tensor, Image.Image],
    std: float = 0.0,
) -> Image.Image:
    if not isinstance(fg, torch.Tensor):
        fg = T.ToTensor()(fg)
    if not isinstance(bg, torch.Tensor):
        bg = T.ToTensor()(bg)
    if not isinstance(mask, torch.Tensor):
        mask = (T.ToTensor()(mask) < 0.5).float()[:1]
    if std > 0:
        mask = gaussian_lowpass(mask[None], std)[0].clip_(0, 1)
    return T.ToPILImage()(fg * mask + bg * (1 - mask))


def get_panorama_views(
    panorama_height: int,
    panorama_width: int,
    window_size: int = 64,
) -> tuple[List[Tuple[int]], torch.Tensor]:
    stride = window_size // 2
    is_horizontal = panorama_width > panorama_height
    num_blocks_height = (panorama_height - window_size + stride - 1) // stride + 1
    num_blocks_width = (panorama_width - window_size + stride - 1) // stride + 1
    total_num_blocks = num_blocks_height * num_blocks_width

    half_fwd = torch.linspace(0, 1, (window_size + 1) // 2)
    half_rev = half_fwd.flip(0)
    if window_size % 2 == 1:
        half_rev = half_rev[1:]
    c = torch.cat((half_fwd, half_rev))
    one = torch.ones_like(c)
    f = c.clone()
    f[:window_size // 2] = 1
    b = c.clone()
    b[-(window_size // 2):] = 1

    h = [one] if num_blocks_height == 1 else [f] + [c] * (num_blocks_height - 2) + [b]
    w = [one] if num_blocks_width == 1 else [f] + [c] * (num_blocks_width - 2) + [b]

    views = []
    masks = torch.zeros(total_num_blocks, panorama_height, panorama_width) # (n, h, w)
    for i in range(total_num_blocks):
        hi, wi = i // num_blocks_width, i % num_blocks_width
        h_start = hi * stride
        h_end = min(h_start + window_size, panorama_height)
        w_start = wi * stride
        w_end = min(w_start + window_size, panorama_width)
        views.append((h_start, h_end, w_start, w_end))

        h_width = h_end - h_start
        w_width = w_end - w_start
        masks[i, h_start:h_end, w_start:w_end] = h[hi][:h_width, None] * w[wi][None, :w_width]

    # Sum of the mask weights at each pixel `masks.sum(dim=1)` must be unity.
    return views, masks[None] # (1, n, h, w)


def shift_to_mask_bbox_center(im: torch.Tensor, mask: torch.Tensor, reverse: bool = False) -> List[int]:
    h, w = mask.shape[-2:]
    device = mask.device
    mask = mask.reshape(-1, h, w)
    # assert mask.shape[0] == im.shape[0]
    h_occupied = mask.sum(dim=-2) > 0
    w_occupied = mask.sum(dim=-1) > 0
    l = torch.argmax(h_occupied * torch.arange(w, 0, -1).to(device), 1, keepdim=True).cpu()
    r = torch.argmax(h_occupied * torch.arange(w).to(device), 1, keepdim=True).cpu()
    t = torch.argmax(w_occupied * torch.arange(h, 0, -1).to(device), 1, keepdim=True).cpu()
    b = torch.argmax(w_occupied * torch.arange(h).to(device), 1, keepdim=True).cpu()
    tb = (t + b + 1) // 2
    lr = (l + r + 1) // 2
    shifts = (tb - (h // 2), lr - (w // 2))
    shifts = torch.cat(shifts, dim=1) # (p, 2)
    if reverse:
        shifts = shifts * -1
    return torch.stack([i.roll(shifts=s.tolist(), dims=(-2, -1)) for i, s in zip(im, shifts)], dim=0)


class Streamer:
    def __init__(self, fn: Callable, ema_alpha: float = 0.9) -> None:
        self.fn = fn
        self.ema_alpha = ema_alpha

        self.executor = concurrent.futures.ThreadPoolExecutor(max_workers=1)
        self.future = self.executor.submit(fn)
        self.image = None

        self.prev_exec_time = 0
        self.ema_exec_time = 0

    @property
    def throughput(self) -> float:
        return 1.0 / self.ema_exec_time if self.ema_exec_time else float('inf')

    def timed_fn(self) -> Any:
        start = time.time()
        res = self.fn()
        end = time.time()
        self.prev_exec_time = end - start
        self.ema_exec_time = self.ema_exec_time * self.ema_alpha + self.prev_exec_time * (1 - self.ema_alpha)
        return res

    def __call__(self) -> Any:
        if self.future.done() or self.image is None:
            # get the result (the new image) and start a new task
            image = self.future.result()
            self.future = self.executor.submit(self.timed_fn)
            self.image = image
            return image
        else:
            # if self.fn() is not ready yet, use the previous image
            # NOTE: This assumes that we have access to a previously generated image here.
            # If there's no previous image (i.e., this is the first invocation), you could fall 
            # back to some default image or handle it differently based on your requirements.
            return self.image