Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import tensorflow as tf
|
3 |
+
import librosa
|
4 |
+
import numpy as np
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
import pandas as pd
|
7 |
+
|
8 |
+
# Load the pre-trained model
|
9 |
+
model = tf.keras.models.load_model("model.h5")
|
10 |
+
|
11 |
+
# Function to process audio and make predictions
|
12 |
+
def process_audio(audio_file):
|
13 |
+
# Load audio file
|
14 |
+
y, sr = librosa.load(audio_file, sr=16000)
|
15 |
+
|
16 |
+
# Feature extraction
|
17 |
+
mfcc = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13)
|
18 |
+
mfcc = np.mean(mfcc, axis=1).reshape(1, -1)
|
19 |
+
|
20 |
+
# Predict inhale/exhale using the model
|
21 |
+
prediction = model.predict(mfcc)
|
22 |
+
|
23 |
+
# For demonstration, return the prediction and a waveform plot
|
24 |
+
plt.figure(figsize=(10, 4))
|
25 |
+
librosa.display.waveshow(y, sr=sr)
|
26 |
+
plt.title("Audio Waveform")
|
27 |
+
plt.xlabel("Time (s)")
|
28 |
+
plt.ylabel("Amplitude")
|
29 |
+
plt.savefig("waveform.png")
|
30 |
+
plt.close()
|
31 |
+
|
32 |
+
return f"Prediction: {np.argmax(prediction)}", "waveform.png"
|
33 |
+
|
34 |
+
# Define Gradio interface
|
35 |
+
with gr.Blocks() as demo:
|
36 |
+
gr.Markdown("### Breathe Training Application")
|
37 |
+
with gr.Row():
|
38 |
+
audio_input = gr.Audio(label="Upload or Record Audio", type="filepath")
|
39 |
+
result_output = gr.Textbox(label="Prediction Result")
|
40 |
+
waveform_output = gr.Image(label="Waveform")
|
41 |
+
submit_button = gr.Button("Analyze")
|
42 |
+
|
43 |
+
submit_button.click(
|
44 |
+
fn=process_audio,
|
45 |
+
inputs=[audio_input],
|
46 |
+
outputs=[result_output, waveform_output]
|
47 |
+
)
|
48 |
+
|
49 |
+
# Run the Gradio app
|
50 |
+
demo.launch()
|