DipeshChaudhary
commited on
Commit
•
cdb88fb
1
Parent(s):
d0009f7
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!pip install torch==2.3.0 torchvision torchaudio -f https://download.pytorch.org/whl/cu121/torch_stable.html
|
2 |
+
# Check Python version
|
3 |
+
import sys
|
4 |
+
print("Python version:", sys.version)
|
5 |
+
|
6 |
+
# Check PyTorch version
|
7 |
+
import torch
|
8 |
+
print("PyTorch version:", torch.__version__)
|
9 |
+
|
10 |
+
!pip install "unsloth[cu121-torch230] @ git+https://github.com/unslothai/unsloth.git"
|
11 |
+
|
12 |
+
!pip install triton
|
13 |
+
|
14 |
+
from unsloth import FastLanguageModel
|
15 |
+
|
16 |
+
import torch
|
17 |
+
max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!
|
18 |
+
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
|
19 |
+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False
|
20 |
+
|
21 |
+
|
22 |
+
from transformers import AutoTokenizer
|
23 |
+
|
24 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
25 |
+
model_name="DipeshChaudhary/ShareGPTChatBot-Counselchat1", # Your fine-tuned model
|
26 |
+
max_seq_length=max_seq_length,
|
27 |
+
dtype=dtype,
|
28 |
+
load_in_4bit=load_in_4bit,
|
29 |
+
)
|
30 |
+
|
31 |
+
|
32 |
+
from unsloth.chat_templates import get_chat_template
|
33 |
+
|
34 |
+
|
35 |
+
tokenizer = get_chat_template(
|
36 |
+
tokenizer,
|
37 |
+
chat_template = "llama-3", # Supports zephyr, chatml, mistral, llama, alpaca, vicuna, vicuna_old, unsloth
|
38 |
+
mapping = {"role" : "from", "content" : "value", "user" : "human", "assistant" : "gpt"}, # ShareGPT style
|
39 |
+
)
|
40 |
+
|
41 |
+
|
42 |
+
import re
|
43 |
+
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
|
44 |
+
|
45 |
+
messages = [
|
46 |
+
{"from": "human", "value": "hlo"},
|
47 |
+
]
|
48 |
+
inputs = tokenizer.apply_chat_template(
|
49 |
+
messages,
|
50 |
+
tokenize = True,
|
51 |
+
add_generation_prompt = True, # Must add for generation
|
52 |
+
return_tensors = "pt",
|
53 |
+
).to("cuda")
|
54 |
+
|
55 |
+
|
56 |
+
from transformers import TextStreamer
|
57 |
+
text_streamer = TextStreamer(tokenizer)
|
58 |
+
|
59 |
+
|
60 |
+
x= model.generate(input_ids = inputs, streamer = text_streamer, max_new_tokens = 128, use_cache = True)
|
61 |
+
|
62 |
+
|
63 |
+
# Function to generate response
|
64 |
+
def generate_response(conversation_history):
|
65 |
+
|
66 |
+
inputs = tokenizer.apply_chat_template(conversation_history,
|
67 |
+
tokenize = True,
|
68 |
+
add_generation_prompt = True, # Must add for generation
|
69 |
+
return_tensors = "pt",
|
70 |
+
).to("cuda")
|
71 |
+
text_streamer = TextStreamer(tokenizer)
|
72 |
+
|
73 |
+
|
74 |
+
# Set the pad_token_id to the eos_token_id if it's not set
|
75 |
+
if tokenizer.pad_token_id is None:
|
76 |
+
tokenizer.pad_token_id = tokenizer.eos_token_id
|
77 |
+
|
78 |
+
# Generate the response
|
79 |
+
output = model.generate(
|
80 |
+
inputs,
|
81 |
+
max_new_tokens=10000,
|
82 |
+
use_cache=True,
|
83 |
+
pad_token_id=tokenizer.pad_token_id,
|
84 |
+
attention_mask=inputs.ne(tokenizer.pad_token_id)
|
85 |
+
)
|
86 |
+
|
87 |
+
# Decode the output, skipping special tokens
|
88 |
+
decoded_output = tokenizer.decode(output[0], skip_special_tokens=True)
|
89 |
+
|
90 |
+
# Extract only the bot's response
|
91 |
+
bot_response = decoded_output.split("assistant")[-1].strip()
|
92 |
+
|
93 |
+
return bot_response
|
94 |
+
|
95 |
+
# Example usage
|
96 |
+
conversation_history = []
|
97 |
+
while True:
|
98 |
+
user_input = input("User: ")
|
99 |
+
if user_input.lower() == "exit":
|
100 |
+
print("Exiting...")
|
101 |
+
break
|
102 |
+
|
103 |
+
# Append user message to history
|
104 |
+
conversation_history.append({"from": "human", "value": user_input})
|
105 |
+
|
106 |
+
# Generate response
|
107 |
+
response = generate_response(conversation_history)
|
108 |
+
|
109 |
+
# Append bot response to history
|
110 |
+
conversation_history.append({"from": "bot", "value": response})
|
111 |
+
|
112 |
+
#Print bot's response
|
113 |
+
print("Bot:", response)
|