File size: 10,293 Bytes
f239efc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304

import functools
import itertools
import logging
from tqdm import tqdm
from PIL import Image
from multiprocessing import Pool
from argparse import ArgumentParser
import multiprocessing as mp



import numpy as np
import torch

import torchvision

import transformers
from decord import VideoReader, cpu

from tasks.eval.model_utils import load_pllava, pllava_answer
from tasks.eval.eval_utils import conv_templates

logging.basicConfig()
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)


IMAGE_TOKEN='<image>'
from tasks.eval.videoqabench import (
    VideoQABenchDataset,
    load_results,
    save_results,
)
RESOLUTION = 672 # 
VIDEOQA_DATASETS=["MSVD_QA","MSRVTT_QA", "ActivityNet","TGIF_QA"]
def parse_args():
    parser = ArgumentParser()
    parser.add_argument(
        "--pretrained_model_name_or_path",
        type=str,
        required=True,
        default='llava-hf/llava-1.5-7b-hf'
    )
    parser.add_argument(
        "--save_path",
        type=str,
        required=True,
        default='"./test_results/test_llava_mvbench"'
    )
    parser.add_argument(
        "--num_frames",
        type=int,
        required=True,
        default=4,
    )
    parser.add_argument(
        "--use_lora",
        action='store_true'
    )
    parser.add_argument(
        "--lora_alpha",
        type=int,
        required=False,
        default=32,
    )
    parser.add_argument(
        "--max_new_tokens",
        type=int,
        required=False,
        default=100,
    )
    parser.add_argument(
        "--weight_dir",
        type=str,
        required=False,
        default=None,
    )
    parser.add_argument(
        "--eval_model",
        type=str,
        required=False,
        default="gpt-3.5-turbo-0125",
    )
    parser.add_argument(
        '--test_ratio',
        type=float,
        required=False,
        default=1
    )
    parser.add_argument(
        "--conv_mode", 
        type=str,
        required=False,
        default='eval_videoqabench',
    )
    parser.add_argument(
        "--test_datasets", 
        type=str,
        required=False,
        default='MSVD_QA',
    )
    args = parser.parse_args()
    return args

def load_model_and_dataset(rank, world_size, pretrained_model_name_or_path, num_frames, use_lora, lora_alpha, weight_dir, test_ratio, test_datasets):
    # remind that, once the model goes larger (30B+) may cause the memory to be heavily used up. Even Tearing Nodes.
    model, processor = load_pllava(pretrained_model_name_or_path, num_frames=num_frames, use_lora=use_lora, lora_alpha=lora_alpha, weight_dir=weight_dir)
    logger.info('done loading llava')
    #  position embedding
    model = model.to(torch.device(rank))
    model = model.eval()

    dataset = VideoQABenchDataset(test_ratio=test_ratio, test_datasets=test_datasets, num_segments=num_frames)
    dataset.set_rank_and_world_size(rank, world_size)
    return model, processor, dataset

def infer_videoqabench(
        model,
        processor,
        data_sample, 
        conv_mode,
        pre_query_prompt=None, # add in the head of question
        post_query_prompt=None, # add in the end of question
        answer_prompt=None, # add in the begining of answer
        return_prompt=None,  # add in the begining of return message
        print_res=False,
        max_new_tokens=100,
    ):
    video_list = data_sample["video_pils"]
    conv = conv_templates[conv_mode].copy()

    pre_query_prompt=conv.pre_query_prompt
    post_query_prompt=conv.post_query_prompt
    answer_prompt=conv.answer_prompt
        
    conv.user_query(data_sample['question'], pre_query_prompt, post_query_prompt, is_mm=True)
    if answer_prompt is not None:
        conv.assistant_response(answer_prompt)

    llm_message, conv = pllava_answer(
        conv=conv,
        model=model,
        processor=processor,
        img_list=video_list,
        max_new_tokens=max_new_tokens,
        do_sample=False,
        print_res=print_res,
    )
        
    if answer_prompt is not None:
        llm_message =  ''.join(llm_message.split(answer_prompt.strip("\n"))[1:]).strip()

    if return_prompt is not None:
        llm_message = return_prompt + llm_message

    return llm_message
   
def single_test(model, processor, vid_path, num_frames=4, conv_mode="plain"):
    def get_index(num_frames, num_segments):
        seg_size = float(num_frames - 1) / num_segments
        start = int(seg_size / 2)
        offsets = np.array([
            start + int(np.round(seg_size * idx)) for idx in range(num_segments)
        ])
        return offsets

    def load_video(video_path, num_segments=8, return_msg=False, num_frames=4, resolution=336):
        transforms = torchvision.transforms.Resize(size=resolution)
        vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
        num_frames = len(vr)
        frame_indices = get_index(num_frames, num_segments)
        images_group = list()
        for frame_index in frame_indices:
            img = Image.fromarray(vr[frame_index].asnumpy())
            images_group.append(transforms(img))
        if return_msg:
            fps = float(vr.get_avg_fps())
            sec = ", ".join([str(round(f / fps, 1)) for f in frame_indices])
            # " " should be added in the start and end
            msg = f"The video contains {len(frame_indices)} frames sampled at {sec} seconds."
            return images_group, msg
        else:
            return images_group

    if num_frames != 0:
        vid, msg = load_video(vid_path, num_segments=num_frames, return_msg=True, resolution=RESOLUTION)
    else:
        vid, msg = None, 'num_frames is 0, not inputing image'
    img_list = vid

    conv = conv_templates[conv_mode].copy()
    conv.user_query("Describe the video in details.", is_mm=True)
    llm_response, conv = pllava_answer(conv=conv, model=model, processor=processor, do_sample=False, img_list=img_list, max_new_tokens=256, print_res=True)

def run(rank, args, world_size):
    if rank != 0:
        transformers.utils.logging.set_verbosity_error()
        logger.setLevel(transformers.logging.ERROR)

    print_res = True
    conv_mode= args.conv_mode
    pre_query_prompt = None
    post_query_prompt = None
    # pre_query_prompt = "Answer the question with a single word or phrase."

    logger.info(f'loading model and constructing dataset to gpu {rank}...')
    test_datasets = [x for x in args.test_datasets.split("-") if x in VIDEOQA_DATASETS]
    assert len(test_datasets)>=1
    
    model, processor, dataset = load_model_and_dataset(rank,
                                                       world_size,
                                                       pretrained_model_name_or_path=args.pretrained_model_name_or_path,
                                                       num_frames=args.num_frames,
                                                       use_lora=args.use_lora,
                                                       lora_alpha=args.lora_alpha,
                                                       weight_dir=args.weight_dir,
                                                       test_ratio=args.test_ratio,
                                                       test_datasets=test_datasets)
    logger.info(f'done model and dataset...')
    logger.info('constructing dataset...')
    logger.info('single test...')
    vid_path = "./example/yoga.mp4"
    # vid_path = "./example/jesse_dance.mp4"
    if rank == 0:
        single_test(model, processor, vid_path, num_frames=args.num_frames, conv_mode=args.conv_mode)
        logger.info('single test done...')
        tbar = tqdm(total=len(dataset))
    logger.info('single test...')

    result_list = []
    done_count = 0
    for example in dataset:
        task_type = example['task_type']
        gt = example['answer']
        if task_type in dataset.data_list_info:
            pred = infer_videoqabench(
                model,
                processor,
                example, 
                conv_mode=conv_mode,
                pre_query_prompt=pre_query_prompt,
                post_query_prompt=post_query_prompt,
                print_res=print_res,
                max_new_tokens=args.max_new_tokens,
            )

            infos = {
                'question': example['question'],
                'video_path': example['video_path']
            }
            res = {
                'pred': pred,
                'gt': gt,
                'task_type': task_type,
                **infos    
            }
        else:
            raise NotImplementedError(f'not implemented task type {task_type}')
        # res = chatgpt_eval(res)
        result_list.append(res)
        if rank == 0:
            tbar.update(len(result_list) - done_count, )
            tbar.set_description_str(
                f"One Chunk--Task Type: {task_type}-"
                f"gt: {gt[:min(15, len(gt))]}......--pred: {pred[:min(15, len(gt))]}......"
            )
            done_count = len(result_list)
    return result_list

def main():
    multiprocess=True
    mp.set_start_method('spawn')
    args = parse_args()
    save_path = args.save_path
    eval_model = args.eval_model
    logger.info(f'trying loading results from {save_path}')
    result_list = load_results(save_path)
    
    if result_list is None:
        if multiprocess:

            logger.info(f'started benchmarking, saving to: {save_path}')
            n_gpus = torch.cuda.device_count()
            # assert n_gpus >= 2, f"Requires at least 2 GPUs to run, but got {n_gpus}"
            world_size = n_gpus
            with Pool(world_size) as pool:
                func = functools.partial(run, args=args, world_size=world_size)
                # func = functools.partial(run, world_size=world_size, model=model, dataset=dataset, result_list=[], acc_dict={})
                result_lists = pool.map(func, range(world_size))
            
            logger.info('finished running')

            result_list = [ res for res in itertools.chain(*result_lists)]
        else:
            result_list = run(0, world_size=1, args=args) # debug
    else:
        logger.info(f'loaded results from {save_path}')

    save_results(result_list, save_path, model=eval_model)
    
    
if __name__ == "__main__":
    main()