Spaces:
Runtime error
Runtime error
File size: 10,293 Bytes
f239efc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
import functools
import itertools
import logging
from tqdm import tqdm
from PIL import Image
from multiprocessing import Pool
from argparse import ArgumentParser
import multiprocessing as mp
import numpy as np
import torch
import torchvision
import transformers
from decord import VideoReader, cpu
from tasks.eval.model_utils import load_pllava, pllava_answer
from tasks.eval.eval_utils import conv_templates
logging.basicConfig()
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
IMAGE_TOKEN='<image>'
from tasks.eval.videoqabench import (
VideoQABenchDataset,
load_results,
save_results,
)
RESOLUTION = 672 #
VIDEOQA_DATASETS=["MSVD_QA","MSRVTT_QA", "ActivityNet","TGIF_QA"]
def parse_args():
parser = ArgumentParser()
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
required=True,
default='llava-hf/llava-1.5-7b-hf'
)
parser.add_argument(
"--save_path",
type=str,
required=True,
default='"./test_results/test_llava_mvbench"'
)
parser.add_argument(
"--num_frames",
type=int,
required=True,
default=4,
)
parser.add_argument(
"--use_lora",
action='store_true'
)
parser.add_argument(
"--lora_alpha",
type=int,
required=False,
default=32,
)
parser.add_argument(
"--max_new_tokens",
type=int,
required=False,
default=100,
)
parser.add_argument(
"--weight_dir",
type=str,
required=False,
default=None,
)
parser.add_argument(
"--eval_model",
type=str,
required=False,
default="gpt-3.5-turbo-0125",
)
parser.add_argument(
'--test_ratio',
type=float,
required=False,
default=1
)
parser.add_argument(
"--conv_mode",
type=str,
required=False,
default='eval_videoqabench',
)
parser.add_argument(
"--test_datasets",
type=str,
required=False,
default='MSVD_QA',
)
args = parser.parse_args()
return args
def load_model_and_dataset(rank, world_size, pretrained_model_name_or_path, num_frames, use_lora, lora_alpha, weight_dir, test_ratio, test_datasets):
# remind that, once the model goes larger (30B+) may cause the memory to be heavily used up. Even Tearing Nodes.
model, processor = load_pllava(pretrained_model_name_or_path, num_frames=num_frames, use_lora=use_lora, lora_alpha=lora_alpha, weight_dir=weight_dir)
logger.info('done loading llava')
# position embedding
model = model.to(torch.device(rank))
model = model.eval()
dataset = VideoQABenchDataset(test_ratio=test_ratio, test_datasets=test_datasets, num_segments=num_frames)
dataset.set_rank_and_world_size(rank, world_size)
return model, processor, dataset
def infer_videoqabench(
model,
processor,
data_sample,
conv_mode,
pre_query_prompt=None, # add in the head of question
post_query_prompt=None, # add in the end of question
answer_prompt=None, # add in the begining of answer
return_prompt=None, # add in the begining of return message
print_res=False,
max_new_tokens=100,
):
video_list = data_sample["video_pils"]
conv = conv_templates[conv_mode].copy()
pre_query_prompt=conv.pre_query_prompt
post_query_prompt=conv.post_query_prompt
answer_prompt=conv.answer_prompt
conv.user_query(data_sample['question'], pre_query_prompt, post_query_prompt, is_mm=True)
if answer_prompt is not None:
conv.assistant_response(answer_prompt)
llm_message, conv = pllava_answer(
conv=conv,
model=model,
processor=processor,
img_list=video_list,
max_new_tokens=max_new_tokens,
do_sample=False,
print_res=print_res,
)
if answer_prompt is not None:
llm_message = ''.join(llm_message.split(answer_prompt.strip("\n"))[1:]).strip()
if return_prompt is not None:
llm_message = return_prompt + llm_message
return llm_message
def single_test(model, processor, vid_path, num_frames=4, conv_mode="plain"):
def get_index(num_frames, num_segments):
seg_size = float(num_frames - 1) / num_segments
start = int(seg_size / 2)
offsets = np.array([
start + int(np.round(seg_size * idx)) for idx in range(num_segments)
])
return offsets
def load_video(video_path, num_segments=8, return_msg=False, num_frames=4, resolution=336):
transforms = torchvision.transforms.Resize(size=resolution)
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
num_frames = len(vr)
frame_indices = get_index(num_frames, num_segments)
images_group = list()
for frame_index in frame_indices:
img = Image.fromarray(vr[frame_index].asnumpy())
images_group.append(transforms(img))
if return_msg:
fps = float(vr.get_avg_fps())
sec = ", ".join([str(round(f / fps, 1)) for f in frame_indices])
# " " should be added in the start and end
msg = f"The video contains {len(frame_indices)} frames sampled at {sec} seconds."
return images_group, msg
else:
return images_group
if num_frames != 0:
vid, msg = load_video(vid_path, num_segments=num_frames, return_msg=True, resolution=RESOLUTION)
else:
vid, msg = None, 'num_frames is 0, not inputing image'
img_list = vid
conv = conv_templates[conv_mode].copy()
conv.user_query("Describe the video in details.", is_mm=True)
llm_response, conv = pllava_answer(conv=conv, model=model, processor=processor, do_sample=False, img_list=img_list, max_new_tokens=256, print_res=True)
def run(rank, args, world_size):
if rank != 0:
transformers.utils.logging.set_verbosity_error()
logger.setLevel(transformers.logging.ERROR)
print_res = True
conv_mode= args.conv_mode
pre_query_prompt = None
post_query_prompt = None
# pre_query_prompt = "Answer the question with a single word or phrase."
logger.info(f'loading model and constructing dataset to gpu {rank}...')
test_datasets = [x for x in args.test_datasets.split("-") if x in VIDEOQA_DATASETS]
assert len(test_datasets)>=1
model, processor, dataset = load_model_and_dataset(rank,
world_size,
pretrained_model_name_or_path=args.pretrained_model_name_or_path,
num_frames=args.num_frames,
use_lora=args.use_lora,
lora_alpha=args.lora_alpha,
weight_dir=args.weight_dir,
test_ratio=args.test_ratio,
test_datasets=test_datasets)
logger.info(f'done model and dataset...')
logger.info('constructing dataset...')
logger.info('single test...')
vid_path = "./example/yoga.mp4"
# vid_path = "./example/jesse_dance.mp4"
if rank == 0:
single_test(model, processor, vid_path, num_frames=args.num_frames, conv_mode=args.conv_mode)
logger.info('single test done...')
tbar = tqdm(total=len(dataset))
logger.info('single test...')
result_list = []
done_count = 0
for example in dataset:
task_type = example['task_type']
gt = example['answer']
if task_type in dataset.data_list_info:
pred = infer_videoqabench(
model,
processor,
example,
conv_mode=conv_mode,
pre_query_prompt=pre_query_prompt,
post_query_prompt=post_query_prompt,
print_res=print_res,
max_new_tokens=args.max_new_tokens,
)
infos = {
'question': example['question'],
'video_path': example['video_path']
}
res = {
'pred': pred,
'gt': gt,
'task_type': task_type,
**infos
}
else:
raise NotImplementedError(f'not implemented task type {task_type}')
# res = chatgpt_eval(res)
result_list.append(res)
if rank == 0:
tbar.update(len(result_list) - done_count, )
tbar.set_description_str(
f"One Chunk--Task Type: {task_type}-"
f"gt: {gt[:min(15, len(gt))]}......--pred: {pred[:min(15, len(gt))]}......"
)
done_count = len(result_list)
return result_list
def main():
multiprocess=True
mp.set_start_method('spawn')
args = parse_args()
save_path = args.save_path
eval_model = args.eval_model
logger.info(f'trying loading results from {save_path}')
result_list = load_results(save_path)
if result_list is None:
if multiprocess:
logger.info(f'started benchmarking, saving to: {save_path}')
n_gpus = torch.cuda.device_count()
# assert n_gpus >= 2, f"Requires at least 2 GPUs to run, but got {n_gpus}"
world_size = n_gpus
with Pool(world_size) as pool:
func = functools.partial(run, args=args, world_size=world_size)
# func = functools.partial(run, world_size=world_size, model=model, dataset=dataset, result_list=[], acc_dict={})
result_lists = pool.map(func, range(world_size))
logger.info('finished running')
result_list = [ res for res in itertools.chain(*result_lists)]
else:
result_list = run(0, world_size=1, args=args) # debug
else:
logger.info(f'loaded results from {save_path}')
save_results(result_list, save_path, model=eval_model)
if __name__ == "__main__":
main() |