File size: 1,654 Bytes
fec90af
 
 
 
 
 
 
 
 
1fae59e
 
 
 
ce59ec4
1fae59e
a2fa6ef
8defbbd
1fae59e
a2fa6ef
d63f2a7
 
 
 
1fae59e
7032039
d63f2a7
 
ce59ec4
d63f2a7
 
 
 
 
 
 
 
1fae59e
ce59ec4
c64dfc8
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
---
title: README
emoji: πŸ“Š
colorFrom: purple
colorTo: gray
sdk: static
pinned: false
---

Multilingual language models are typically large, requiring significant computational resources.

Can we create multilingual models that maintain performance comparable to their larger models while reducing size, latency and inference speeds?

# Techniques:
- Pruning
  - SparseGPT | [GitHub](https://github.com/VishnuVardhanSaiLanka/sparsegpt/tree/aya)
  - ShortGPT | [KLDBasedPruning & Perplexity Sensivities](https://github.com/rsk2327/DistAya/tree/main)
- Knowledge Distillation
  - DistillKit | [GitHub](https://github.com/ShayekhBinIslam/DistillKit)
  - Distil-Whisper based method
  - On policy distillation of language models
  - Minitron: Compact Language models via Pruning & Knowledge Distillation
  - DistiLLM: Towards Streamlined Distillation for Large Language Models
- Quantization
- KV Cache Compression
- Fine-Tuning | [GitHub](https://github.com/rsk2327/DistAya/tree/track/fine-tuning)

# Datasets:
Initial 7 datasets unified, having 6.62M rows which includes the following:
- Bangla_Alpaca_Orca : Bangle
- Urdu_Instruct_News_Article_Generation: Urdu
- Urdu_Instruct_News_Headline_Generation: Urdu
- Urdu_Instruct_News_Category_Classification: Urdu
- cidar: Arabic
- Six_Millions_Instruction_Dataset_For_Arabic_Llm_Ft: Arabic
- instructv3: English

## Get in touch with the team:
- Mayank Bhaskar -> mayankbhaskar007@gmail.com
- Ahmad Anis -> ahmadanis5050@gmail.com
- Drishti Sharma -> drishtisharma96505@gmail.com
- Vishnu Vardhan -> vardhanvishnu691@gmail.com
- Yaya -> yayasysco@gmail.com
- Shayekh Bin Islam -> shayekh.bin.islam@gmail.com