Divyanshh commited on
Commit
1b64790
1 Parent(s): 1139efa

embeddings test Instructor-XL

Browse files
Files changed (3) hide show
  1. Code.txt +0 -0
  2. __pycache__/util.cpython-310.pyc +0 -0
  3. util.py +3 -1
Code.txt DELETED
The diff for this file is too large to render. See raw diff
 
__pycache__/util.cpython-310.pyc CHANGED
Binary files a/__pycache__/util.cpython-310.pyc and b/__pycache__/util.cpython-310.pyc differ
 
util.py CHANGED
@@ -1,6 +1,7 @@
1
  import os
2
  import streamlit as st
3
  from langchain_community.embeddings import HuggingFaceEmbeddings
 
4
  from langchain_community.vectorstores import Chroma
5
  # from langchain.llms.huggingface_pipeline import HuggingFacePipeline
6
  # from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, BitsAndBytesConfig
@@ -21,7 +22,8 @@ genai.configure(api_key = os.environ['GOOGLE_API_KEY'])
21
 
22
 
23
  model_kwargs = {'device': 'cpu'}
24
- embeddings = HuggingFaceEmbeddings(model_kwargs=model_kwargs)
 
25
 
26
  # tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2")
27
  # model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2", device_map='auto', quantization_config = quantization_config)
 
1
  import os
2
  import streamlit as st
3
  from langchain_community.embeddings import HuggingFaceEmbeddings
4
+ from sentence_transformers import SentenceTransformer
5
  from langchain_community.vectorstores import Chroma
6
  # from langchain.llms.huggingface_pipeline import HuggingFacePipeline
7
  # from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, BitsAndBytesConfig
 
22
 
23
 
24
  model_kwargs = {'device': 'cpu'}
25
+ embeddings = HuggingFaceEmbeddings(model_name="hkunlp/instructor-xl",model_kwargs=model_kwargs, )
26
+ # embeddings = SentenceTransformer(model_name_or_path="All-MiniLM-L6-v2")
27
 
28
  # tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2")
29
  # model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2", device_map='auto', quantization_config = quantization_config)