Spaces:
Runtime error
Runtime error
Upload 9 files
Browse files- .gitignore +161 -0
- README.md +54 -7
- app.py +182 -0
- data.py +48 -0
- names.py +3 -0
- requirements.txt +11 -0
- scrape.py +98 -0
- storage.py +21 -0
- utils.py +30 -0
.gitignore
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
disney-lyrics/
|
2 |
+
# Byte-compiled / optimized / DLL files
|
3 |
+
__pycache__/
|
4 |
+
*.py[cod]
|
5 |
+
*$py.class
|
6 |
+
|
7 |
+
# C extensions
|
8 |
+
*.so
|
9 |
+
|
10 |
+
# Distribution / packaging
|
11 |
+
.Python
|
12 |
+
build/
|
13 |
+
develop-eggs/
|
14 |
+
dist/
|
15 |
+
downloads/
|
16 |
+
eggs/
|
17 |
+
.eggs/
|
18 |
+
lib/
|
19 |
+
lib64/
|
20 |
+
parts/
|
21 |
+
sdist/
|
22 |
+
var/
|
23 |
+
wheels/
|
24 |
+
share/python-wheels/
|
25 |
+
*.egg-info/
|
26 |
+
.installed.cfg
|
27 |
+
*.egg
|
28 |
+
MANIFEST
|
29 |
+
|
30 |
+
# PyInstaller
|
31 |
+
# Usually these files are written by a python script from a template
|
32 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
33 |
+
*.manifest
|
34 |
+
*.spec
|
35 |
+
|
36 |
+
# Installer logs
|
37 |
+
pip-log.txt
|
38 |
+
pip-delete-this-directory.txt
|
39 |
+
|
40 |
+
# Unit test / coverage reports
|
41 |
+
htmlcov/
|
42 |
+
.tox/
|
43 |
+
.nox/
|
44 |
+
.coverage
|
45 |
+
.coverage.*
|
46 |
+
.cache
|
47 |
+
nosetests.xml
|
48 |
+
coverage.xml
|
49 |
+
*.cover
|
50 |
+
*.py,cover
|
51 |
+
.hypothesis/
|
52 |
+
.pytest_cache/
|
53 |
+
cover/
|
54 |
+
|
55 |
+
# Translations
|
56 |
+
*.mo
|
57 |
+
*.pot
|
58 |
+
|
59 |
+
# Django stuff:
|
60 |
+
*.log
|
61 |
+
local_settings.py
|
62 |
+
db.sqlite3
|
63 |
+
db.sqlite3-journal
|
64 |
+
|
65 |
+
# Flask stuff:
|
66 |
+
instance/
|
67 |
+
.webassets-cache
|
68 |
+
|
69 |
+
# Scrapy stuff:
|
70 |
+
.scrapy
|
71 |
+
|
72 |
+
# Sphinx documentation
|
73 |
+
docs/_build/
|
74 |
+
|
75 |
+
# PyBuilder
|
76 |
+
.pybuilder/
|
77 |
+
target/
|
78 |
+
|
79 |
+
# Jupyter Notebook
|
80 |
+
.ipynb_checkpoints
|
81 |
+
|
82 |
+
# IPython
|
83 |
+
profile_default/
|
84 |
+
ipython_config.py
|
85 |
+
|
86 |
+
# pyenv
|
87 |
+
# For a library or package, you might want to ignore these files since the code is
|
88 |
+
# intended to run in multiple environments; otherwise, check them in:
|
89 |
+
# .python-version
|
90 |
+
|
91 |
+
# pipenv
|
92 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
93 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
94 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
95 |
+
# install all needed dependencies.
|
96 |
+
#Pipfile.lock
|
97 |
+
|
98 |
+
# poetry
|
99 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
100 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
101 |
+
# commonly ignored for libraries.
|
102 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
103 |
+
#poetry.lock
|
104 |
+
|
105 |
+
# pdm
|
106 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
107 |
+
#pdm.lock
|
108 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
109 |
+
# in version control.
|
110 |
+
# https://pdm.fming.dev/#use-with-ide
|
111 |
+
.pdm.toml
|
112 |
+
|
113 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
114 |
+
__pypackages__/
|
115 |
+
|
116 |
+
# Celery stuff
|
117 |
+
celerybeat-schedule
|
118 |
+
celerybeat.pid
|
119 |
+
|
120 |
+
# SageMath parsed files
|
121 |
+
*.sage.py
|
122 |
+
|
123 |
+
# Environments
|
124 |
+
.env
|
125 |
+
.venv
|
126 |
+
env/
|
127 |
+
venv/
|
128 |
+
ENV/
|
129 |
+
env.bak/
|
130 |
+
venv.bak/
|
131 |
+
|
132 |
+
# Spyder project settings
|
133 |
+
.spyderproject
|
134 |
+
.spyproject
|
135 |
+
|
136 |
+
# Rope project settings
|
137 |
+
.ropeproject
|
138 |
+
|
139 |
+
# mkdocs documentation
|
140 |
+
/site
|
141 |
+
|
142 |
+
# mypy
|
143 |
+
.mypy_cache/
|
144 |
+
.dmypy.json
|
145 |
+
dmypy.json
|
146 |
+
|
147 |
+
# Pyre type checker
|
148 |
+
.pyre/
|
149 |
+
|
150 |
+
# pytype static type analyzer
|
151 |
+
.pytype/
|
152 |
+
|
153 |
+
# Cython debug symbols
|
154 |
+
cython_debug/
|
155 |
+
|
156 |
+
# PyCharm
|
157 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
158 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
159 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
160 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
161 |
+
#.idea/
|
README.md
CHANGED
@@ -1,12 +1,59 @@
|
|
1 |
---
|
2 |
-
title: PlayMyEmotions
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
-
sdk: streamlit
|
7 |
-
sdk_version: 1.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: "PlayMyEmotions"
|
3 |
+
emoji: "🔮"
|
4 |
+
colorFrom: "indigo"
|
5 |
+
colorTo: "purple"
|
6 |
+
sdk: "streamlit"
|
7 |
+
sdk_version: "1.19.0"
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
+
# Play My Emotions 🎵🏰🔮
|
13 |
+
|
14 |
+
This app takes a user input and suggestes songs that matches its emotions/vibes.
|
15 |
+
|
16 |
+
Made with [DeepLake](https://www.deeplake.ai/) 🚀 and [LangChain](https://python.langchain.com/en/latest/index.html) 🦜⛓️
|
17 |
+
|
18 |
+
We also used [upstash](https://upstash.com/) to store user inputs/emotions and recommended songs
|
19 |
+
|
20 |
+
## How it works
|
21 |
+
|
22 |
+
The application follows a sequence of steps to deliver Disney songs matching the user's emotions:
|
23 |
+
- **User Input**: The application starts by collecting user's emotional state through a text input.
|
24 |
+
- **Emotion Encoding**: The user-provided emotions are then fed to a Language Model (LLM). The LLM interprets and encodes these emotions.
|
25 |
+
- **Similarity Search**: These encoded emotions are utilized to perform a similarity search within our [vector database](Deep Lake Vector Store in LangChain). This database houses Disney songs, each represented as emotional embeddings.
|
26 |
+
- **Song Selection**: From the pool of top matching songs, the application randomly selects one. The selection is weighted, giving preference to songs with higher similarity scores.
|
27 |
+
- **Song Retrieval**: The selected song's embedded player is displayed on the webpage for the user. Additionally, the LLM interpreted emotional state associated with the chosen song is displayed.
|
28 |
+
|
29 |
+
## Run it
|
30 |
+
|
31 |
+
Clone this repo.
|
32 |
+
|
33 |
+
create a `venv`
|
34 |
+
|
35 |
+
```
|
36 |
+
python -m venv .venv
|
37 |
+
source .venv/bin/activate
|
38 |
+
pip install -r requirements.txt
|
39 |
+
```
|
40 |
+
|
41 |
+
You will need the following `.env` file
|
42 |
+
|
43 |
+
```bash
|
44 |
+
OPENAI_API_KEY=<OPENAI_API_KEY>
|
45 |
+
ACTIVELOOP_TOKEN=<ACTIVELOOP_TOKEN>
|
46 |
+
ACTIVELOOP_ORG_ID=zuppif
|
47 |
+
UPSTASH_URL=<UPSTASH_URL>
|
48 |
+
UPSTASH_PASSWORD=<UPSTASH_PASSWORD>
|
49 |
+
```
|
50 |
+
|
51 |
+
If you **don't want to use upstash** set the `USE_STORAGE=False`
|
52 |
+
|
53 |
+
Then
|
54 |
+
|
55 |
+
```
|
56 |
+
streamlit run app.py
|
57 |
+
```
|
58 |
+
|
59 |
+
Then navitage to `http://192.168.1.181:8501`
|
app.py
ADDED
@@ -0,0 +1,182 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
|
3 |
+
import streamlit as st
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
from langchain.chains import LLMChain
|
6 |
+
from langchain.prompts import PromptTemplate
|
7 |
+
|
8 |
+
load_dotenv()
|
9 |
+
import os
|
10 |
+
from typing import List, Tuple
|
11 |
+
|
12 |
+
import numpy as np
|
13 |
+
from langchain.chat_models import ChatOpenAI
|
14 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
15 |
+
from langchain.schema import Document
|
16 |
+
|
17 |
+
from data import load_db
|
18 |
+
from names import DATASET_ID, MODEL_ID
|
19 |
+
from storage import RedisStorage, UserInput
|
20 |
+
from utils import weighted_random_sample
|
21 |
+
|
22 |
+
|
23 |
+
class RetrievalType:
|
24 |
+
FIRST_MATCH = "first-match"
|
25 |
+
POOL_MATCHES = "pool-matches"
|
26 |
+
|
27 |
+
|
28 |
+
Matches = List[Tuple[Document, float]]
|
29 |
+
USE_STORAGE = os.environ.get("USE_STORAGE", "True").lower() in ("true", "t", "1")
|
30 |
+
|
31 |
+
print("USE_STORAGE", USE_STORAGE)
|
32 |
+
|
33 |
+
|
34 |
+
@st.cache_resource
|
35 |
+
def init():
|
36 |
+
embeddings = OpenAIEmbeddings(model=MODEL_ID)
|
37 |
+
dataset_path = f"hub://{os.environ['ACTIVELOOP_ORG_ID']}/{DATASET_ID}"
|
38 |
+
|
39 |
+
db = load_db(
|
40 |
+
dataset_path,
|
41 |
+
embedding_function=embeddings,
|
42 |
+
token=os.environ["ACTIVELOOP_TOKEN"],
|
43 |
+
# org_id=os.environ["ACTIVELOOP_ORG_ID"],
|
44 |
+
read_only=True,
|
45 |
+
)
|
46 |
+
|
47 |
+
storage = RedisStorage(
|
48 |
+
host=os.environ["UPSTASH_URL"], password=os.environ["UPSTASH_PASSWORD"]
|
49 |
+
)
|
50 |
+
prompt = PromptTemplate(
|
51 |
+
input_variables=["user_input"],
|
52 |
+
template=Path("prompts/bot.prompt").read_text(),
|
53 |
+
)
|
54 |
+
|
55 |
+
llm = ChatOpenAI(temperature=0.3)
|
56 |
+
|
57 |
+
chain = LLMChain(llm=llm, prompt=prompt)
|
58 |
+
|
59 |
+
return db, storage, chain
|
60 |
+
|
61 |
+
|
62 |
+
# Don't show the setting sidebar
|
63 |
+
if "sidebar_state" not in st.session_state:
|
64 |
+
st.session_state.sidebar_state = "collapsed"
|
65 |
+
|
66 |
+
st.set_page_config(initial_sidebar_state=st.session_state.sidebar_state)
|
67 |
+
|
68 |
+
|
69 |
+
db, storage, chain = init()
|
70 |
+
|
71 |
+
st.title("PlayMyEmotions 🎵🏰🔮")
|
72 |
+
st.markdown(
|
73 |
+
"""
|
74 |
+
*<small>Made with [DeepLake](https://www.deeplake.ai/) 🚀 and [LangChain](https://python.langchain.com/en/latest/index.html) 🦜⛓️</small>*
|
75 |
+
|
76 |
+
💫 Unleash the magic within you with our enchanting app, turning your sentiments into a Disney soundtrack! 🌈 Just express your emotions, and embark on a whimsical journey as we tailor a Disney melody to match your mood. 👑💖""",
|
77 |
+
unsafe_allow_html=True,
|
78 |
+
)
|
79 |
+
how_it_works = st.expander(label="How it works")
|
80 |
+
|
81 |
+
text_input = st.text_input(
|
82 |
+
label="How are you feeling today?",
|
83 |
+
placeholder="I am ready to rock and rool!",
|
84 |
+
)
|
85 |
+
|
86 |
+
run_btn = st.button("Make me sing! 🎶")
|
87 |
+
with how_it_works:
|
88 |
+
st.markdown(
|
89 |
+
"""
|
90 |
+
The application follows a sequence of steps to deliver Disney songs matching the user's emotions:
|
91 |
+
- **User Input**: The application starts by collecting user's emotional state through a text input.
|
92 |
+
- **Emotion Encoding**: The user-provided emotions are then fed to a Language Model (LLM). The LLM interprets and encodes these emotions.
|
93 |
+
- **Similarity Search**: These encoded emotions are utilized to perform a similarity search within our [vector database](https://www.deeplake.ai/). This database houses Disney songs, each represented as emotional embeddings.
|
94 |
+
- **Song Selection**: From the pool of top matching songs, the application randomly selects one. The selection is weighted, giving preference to songs with higher similarity scores.
|
95 |
+
- **Song Retrieval**: The selected song's embedded player is displayed on the webpage for the user. Additionally, the LLM interpreted emotional state associated with the chosen song is displayed.
|
96 |
+
"""
|
97 |
+
)
|
98 |
+
|
99 |
+
|
100 |
+
placeholder_emotions = st.empty()
|
101 |
+
placeholder = st.empty()
|
102 |
+
|
103 |
+
|
104 |
+
with st.sidebar:
|
105 |
+
st.text("App settings")
|
106 |
+
filter_threshold = st.slider(
|
107 |
+
"Threshold used to filter out low scoring songs",
|
108 |
+
min_value=0.0,
|
109 |
+
max_value=1.0,
|
110 |
+
value=0.8,
|
111 |
+
)
|
112 |
+
max_number_of_songs = st.slider(
|
113 |
+
"Max number of songs we will retrieve from the db",
|
114 |
+
min_value=5,
|
115 |
+
max_value=50,
|
116 |
+
value=20,
|
117 |
+
step=1,
|
118 |
+
)
|
119 |
+
number_of_displayed_songs = st.slider(
|
120 |
+
"Number of displayed songs", min_value=1, max_value=4, value=2, step=1
|
121 |
+
)
|
122 |
+
|
123 |
+
|
124 |
+
def filter_scores(matches: Matches, th: float = 0.8) -> Matches:
|
125 |
+
return [(doc, score) for (doc, score) in matches if score > th]
|
126 |
+
|
127 |
+
|
128 |
+
def normalize_scores_by_sum(matches: Matches) -> Matches:
|
129 |
+
scores = [score for _, score in matches]
|
130 |
+
tot = sum(scores)
|
131 |
+
return [(doc, (score / tot)) for doc, score in matches]
|
132 |
+
|
133 |
+
|
134 |
+
def get_song(user_input: str, k: int = 20):
|
135 |
+
emotions = chain.run(user_input=user_input)
|
136 |
+
matches = db.similarity_search_with_score(emotions, distance_metric="cos", k=k)
|
137 |
+
# [print(doc.metadata['name'], score) for doc, score in matches]
|
138 |
+
docs, scores = zip(
|
139 |
+
*normalize_scores_by_sum(filter_scores(matches, filter_threshold))
|
140 |
+
)
|
141 |
+
choosen_docs = weighted_random_sample(
|
142 |
+
np.array(docs), np.array(scores), n=number_of_displayed_songs
|
143 |
+
).tolist()
|
144 |
+
return choosen_docs, emotions
|
145 |
+
|
146 |
+
|
147 |
+
def set_song(user_input):
|
148 |
+
if user_input == "":
|
149 |
+
return
|
150 |
+
# take first 120 chars
|
151 |
+
user_input = user_input[:120]
|
152 |
+
docs, emotions = get_song(user_input, k=max_number_of_songs)
|
153 |
+
print(docs)
|
154 |
+
songs = []
|
155 |
+
with placeholder_emotions:
|
156 |
+
st.markdown("Your emotions: `" + emotions + "`")
|
157 |
+
with placeholder:
|
158 |
+
iframes_html = ""
|
159 |
+
for doc in docs:
|
160 |
+
name = doc.metadata["name"]
|
161 |
+
print(f"song = {name}")
|
162 |
+
songs.append(name)
|
163 |
+
embed_url = doc.metadata["embed_url"]
|
164 |
+
iframes_html += (
|
165 |
+
f'<iframe src="{embed_url}" style="border:0;height:100px"> </iframe>'
|
166 |
+
)
|
167 |
+
|
168 |
+
st.markdown(
|
169 |
+
f"<div style='display:flex;flex-direction:column'>{iframes_html}</div>",
|
170 |
+
unsafe_allow_html=True,
|
171 |
+
)
|
172 |
+
|
173 |
+
if USE_STORAGE:
|
174 |
+
success_storage = storage.store(
|
175 |
+
UserInput(text=user_input, emotions=emotions, songs=songs)
|
176 |
+
)
|
177 |
+
if not success_storage:
|
178 |
+
print("[ERROR] was not able to store user_input")
|
179 |
+
|
180 |
+
|
181 |
+
if run_btn:
|
182 |
+
set_song(text_input)
|
data.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dotenv import load_dotenv
|
2 |
+
|
3 |
+
load_dotenv()
|
4 |
+
import json
|
5 |
+
import os
|
6 |
+
|
7 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
8 |
+
from langchain.llms import OpenAI
|
9 |
+
from langchain.vectorstores import DeepLake
|
10 |
+
|
11 |
+
from names import DATASET_ID, MODEL_ID
|
12 |
+
|
13 |
+
|
14 |
+
def create_db(dataset_path: str, json_filepath: str) -> DeepLake:
|
15 |
+
with open(json_filepath, "r") as f:
|
16 |
+
data = json.load(f)
|
17 |
+
|
18 |
+
texts = []
|
19 |
+
metadatas = []
|
20 |
+
|
21 |
+
for movie, lyrics in data.items():
|
22 |
+
for lyric in lyrics:
|
23 |
+
texts.append(lyric["text"])
|
24 |
+
metadatas.append(
|
25 |
+
{
|
26 |
+
"movie": movie,
|
27 |
+
"name": lyric["name"],
|
28 |
+
"embed_url": lyric["embed_url"],
|
29 |
+
}
|
30 |
+
)
|
31 |
+
|
32 |
+
embeddings = OpenAIEmbeddings(model=MODEL_ID)
|
33 |
+
|
34 |
+
db = DeepLake.from_texts(
|
35 |
+
texts, embeddings, metadatas=metadatas, dataset_path=dataset_path
|
36 |
+
)
|
37 |
+
|
38 |
+
return db
|
39 |
+
|
40 |
+
|
41 |
+
def load_db(dataset_path: str, *args, **kwargs) -> DeepLake:
|
42 |
+
db = DeepLake(dataset_path, *args, **kwargs)
|
43 |
+
return db
|
44 |
+
|
45 |
+
|
46 |
+
if __name__ == "__main__":
|
47 |
+
dataset_path = f"hub://{os.environ['ACTIVELOOP_ORG_ID']}/{DATASET_ID}"
|
48 |
+
create_db(dataset_path, "data/emotions_with_spotify_url.json")
|
names.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
MODEL_ID = "text-embedding-ada-002"
|
2 |
+
DATASET_ID = "disney-lyrics"
|
3 |
+
# DATASET_ID = "disney-lyrics-emotions"
|
requirements.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
openai
|
2 |
+
python-dotenv
|
3 |
+
deeplake
|
4 |
+
langchain
|
5 |
+
tiktoken
|
6 |
+
aiohttp
|
7 |
+
cchardet
|
8 |
+
aiodns
|
9 |
+
streamlit
|
10 |
+
redis
|
11 |
+
bs4
|
scrape.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import asyncio
|
2 |
+
import json
|
3 |
+
from collections import defaultdict
|
4 |
+
from itertools import chain
|
5 |
+
from typing import List, Optional, Tuple, TypedDict
|
6 |
+
|
7 |
+
import aiohttp
|
8 |
+
from bs4 import BeautifulSoup
|
9 |
+
|
10 |
+
"""
|
11 |
+
This file scrapes disney songs + lyrics from "https://www.disneyclips.com/lyrics/"
|
12 |
+
"""
|
13 |
+
|
14 |
+
URL = "https://www.disneyclips.com/lyrics/"
|
15 |
+
|
16 |
+
|
17 |
+
async def get_lyrics_names_and_urls_from_movie_url(
|
18 |
+
movie_name: str, url: str, session: aiohttp.ClientSession
|
19 |
+
) -> List[Tuple[str, str]]:
|
20 |
+
async with session.get(url) as response:
|
21 |
+
html = await response.text()
|
22 |
+
soup = BeautifulSoup(html, "html.parser")
|
23 |
+
table = soup.find("table", {"class": "songs"})
|
24 |
+
names_and_urls = []
|
25 |
+
if table:
|
26 |
+
links = table.find_all("a")
|
27 |
+
names_and_urls = []
|
28 |
+
for link in links:
|
29 |
+
names_and_urls.append(
|
30 |
+
(movie_name, link.text, f"{URL}/{link.get('href')}")
|
31 |
+
)
|
32 |
+
return names_and_urls
|
33 |
+
|
34 |
+
|
35 |
+
async def get_lyric_from_lyric_url(
|
36 |
+
movie_name: str, lyric_name: str, url: str, session: aiohttp.ClientSession
|
37 |
+
) -> str:
|
38 |
+
async with session.get(url) as response:
|
39 |
+
html = await response.text()
|
40 |
+
soup = BeautifulSoup(html, "html.parser")
|
41 |
+
div = soup.find("div", {"id": "cnt"}).find("div", {"class": "main"})
|
42 |
+
paragraphs = div.find_all("p")
|
43 |
+
text = ""
|
44 |
+
# first <p> has the lyric
|
45 |
+
p = paragraphs[0]
|
46 |
+
for br in p.find_all("br"):
|
47 |
+
br.replace_with(". ")
|
48 |
+
for span in p.find_all("span"):
|
49 |
+
span.decompose()
|
50 |
+
text += p.text
|
51 |
+
|
52 |
+
return (movie_name, lyric_name, text)
|
53 |
+
|
54 |
+
|
55 |
+
async def get_movie_names_and_urls(
|
56 |
+
session: aiohttp.ClientSession,
|
57 |
+
) -> List[Tuple[str, str]]:
|
58 |
+
async with session.get(URL) as response:
|
59 |
+
html = await response.text()
|
60 |
+
soup = BeautifulSoup(html, "html.parser")
|
61 |
+
links = (
|
62 |
+
soup.find("div", {"id": "cnt"}).find("div", {"class": "main"}).find_all("a")
|
63 |
+
)
|
64 |
+
movie_names_and_urls = [
|
65 |
+
(link.text, f"{URL}/{link.get('href')}") for link in links
|
66 |
+
]
|
67 |
+
return movie_names_and_urls
|
68 |
+
|
69 |
+
|
70 |
+
async def scrape_disney_lyrics():
|
71 |
+
async with aiohttp.ClientSession() as session:
|
72 |
+
data = await get_movie_names_and_urls(session)
|
73 |
+
data = await asyncio.gather(
|
74 |
+
*[
|
75 |
+
asyncio.create_task(
|
76 |
+
get_lyrics_names_and_urls_from_movie_url(*el, session)
|
77 |
+
)
|
78 |
+
for el in data
|
79 |
+
]
|
80 |
+
)
|
81 |
+
data = await asyncio.gather(
|
82 |
+
*[
|
83 |
+
asyncio.create_task(get_lyric_from_lyric_url(*data, session))
|
84 |
+
for data in chain(*data)
|
85 |
+
]
|
86 |
+
)
|
87 |
+
|
88 |
+
result = defaultdict(list)
|
89 |
+
|
90 |
+
for movie_name, lyric_name, lyric_text in data:
|
91 |
+
result[movie_name].append({"name": lyric_name, "text": lyric_text})
|
92 |
+
|
93 |
+
with open("data/lyrics.json", "w") as f:
|
94 |
+
json.dump(result, f)
|
95 |
+
|
96 |
+
|
97 |
+
loop = asyncio.get_event_loop()
|
98 |
+
loop.run_until_complete(scrape_disney_lyrics())
|
storage.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import List, TypedDict
|
3 |
+
from uuid import uuid4
|
4 |
+
|
5 |
+
import redis
|
6 |
+
|
7 |
+
|
8 |
+
class UserInput(TypedDict):
|
9 |
+
text: str
|
10 |
+
emotions: str
|
11 |
+
songs: List[str]
|
12 |
+
|
13 |
+
|
14 |
+
class RedisStorage:
|
15 |
+
def __init__(self, host: str, password: str):
|
16 |
+
self._client = redis.Redis(host=host, port="34307", password=password, ssl=True)
|
17 |
+
|
18 |
+
def store(self, data: UserInput) -> bool:
|
19 |
+
uid = uuid4()
|
20 |
+
response = self._client.json().set(f"data:{uid}", "$", data)
|
21 |
+
return response
|
utils.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
|
4 |
+
def weighted_random_sample(items: np.array, weights: np.array, n: int) -> np.array:
|
5 |
+
"""
|
6 |
+
Does np.random.choice but ensuring we don't have duplicates in the final result
|
7 |
+
|
8 |
+
Args:
|
9 |
+
items (np.array): _description_
|
10 |
+
weights (np.array): _description_
|
11 |
+
n (int): _description_
|
12 |
+
|
13 |
+
Returns:
|
14 |
+
np.array: _description_
|
15 |
+
"""
|
16 |
+
indices = np.arange(len(items))
|
17 |
+
out_indices = []
|
18 |
+
|
19 |
+
for _ in range(n):
|
20 |
+
chosen_index = np.random.choice(indices, p=weights)
|
21 |
+
out_indices.append(chosen_index)
|
22 |
+
|
23 |
+
mask = indices != chosen_index
|
24 |
+
indices = indices[mask]
|
25 |
+
weights = weights[mask]
|
26 |
+
|
27 |
+
if weights.sum() != 0:
|
28 |
+
weights = weights / weights.sum()
|
29 |
+
|
30 |
+
return items[out_indices]
|