Spaces:
Runtime error
Runtime error
feat: update infer
Browse files
app.py
CHANGED
@@ -27,14 +27,23 @@ from vc_infer_pipeline import VC
|
|
27 |
from config import Config
|
28 |
config = Config()
|
29 |
logging.getLogger("numba").setLevel(logging.WARNING)
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
audio_mode = []
|
33 |
f0method_mode = []
|
34 |
f0method_info = ""
|
35 |
|
36 |
-
if
|
37 |
-
|
|
|
|
|
|
|
38 |
f0method_mode = ["pm", "harvest"]
|
39 |
f0method_info = "PM is fast, Harvest is good but extremely slow, Rvmpe is alternative to harvest (might be better). (Default: PM)"
|
40 |
else:
|
@@ -61,7 +70,10 @@ def create_vc_fn(model_name, tgt_sr, net_g, vc, if_f0, version, file_index):
|
|
61 |
protect,
|
62 |
):
|
63 |
try:
|
|
|
64 |
print(f"Converting using {model_name}...")
|
|
|
|
|
65 |
if vc_audio_mode == "Input path" or "Youtube" and vc_input != "":
|
66 |
audio, sr = librosa.load(vc_input, sr=16000, mono=True)
|
67 |
elif vc_audio_mode == "Upload audio":
|
@@ -69,7 +81,7 @@ def create_vc_fn(model_name, tgt_sr, net_g, vc, if_f0, version, file_index):
|
|
69 |
return "You need to upload an audio", None
|
70 |
sampling_rate, audio = vc_upload
|
71 |
duration = audio.shape[0] / sampling_rate
|
72 |
-
if duration > 20 and
|
73 |
return "Please upload an audio file that is less than 20 seconds. If you need to generate a longer audio file, please use Colab.", None
|
74 |
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
|
75 |
if len(audio.shape) > 1:
|
@@ -77,7 +89,7 @@ def create_vc_fn(model_name, tgt_sr, net_g, vc, if_f0, version, file_index):
|
|
77 |
if sampling_rate != 16000:
|
78 |
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
|
79 |
elif vc_audio_mode == "TTS Audio":
|
80 |
-
if len(tts_text) > 100 and
|
81 |
return "Text is too long", None
|
82 |
if tts_text is None or tts_voice is None:
|
83 |
return "You need to enter text and select a voice", None
|
@@ -109,110 +121,120 @@ def create_vc_fn(model_name, tgt_sr, net_g, vc, if_f0, version, file_index):
|
|
109 |
)
|
110 |
info = f"[{datetime.now().strftime('%Y-%m-%d %H:%M')}]: npy: {times[0]}, f0: {times[1]}s, infer: {times[2]}s"
|
111 |
print(f"{model_name} | {info}")
|
112 |
-
|
|
|
113 |
except:
|
114 |
info = traceback.format_exc()
|
115 |
print(info)
|
116 |
-
|
117 |
return vc_fn
|
118 |
|
119 |
def load_model():
|
120 |
categories = []
|
121 |
-
|
122 |
-
folder_info =
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
category_title = category_info['title']
|
127 |
-
category_folder = category_info['folder_path']
|
128 |
-
description = category_info['description']
|
129 |
-
models = []
|
130 |
-
with open(f"weights/{category_folder}/model_info.json", "r", encoding="utf-8") as f:
|
131 |
-
models_info = json.load(f)
|
132 |
-
for character_name, info in models_info.items():
|
133 |
-
if not info['enable']:
|
134 |
continue
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
else:
|
155 |
-
net_g =
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
else:
|
163 |
-
net_g = net_g.float()
|
164 |
-
vc = VC(tgt_sr, config)
|
165 |
-
print(f"Model loaded: {character_name} / {info['feature_retrieval_library']} | ({model_version})")
|
166 |
-
models.append((character_name, model_title, model_author, model_cover, model_version, create_vc_fn(model_name, tgt_sr, net_g, vc, if_f0, version, model_index)))
|
167 |
-
categories.append([category_title, category_folder, description, models])
|
168 |
return categories
|
169 |
|
170 |
-
def
|
171 |
-
|
172 |
-
|
173 |
-
os.mkdir("dl_audio")
|
174 |
-
if audio_provider == "Youtube":
|
175 |
-
ydl_opts = {
|
176 |
-
'noplaylist': True,
|
177 |
-
'format': 'bestaudio/best',
|
178 |
-
'postprocessors': [{
|
179 |
-
'key': 'FFmpegExtractAudio',
|
180 |
-
'preferredcodec': 'wav',
|
181 |
-
}],
|
182 |
-
"outtmpl": 'dl_audio/youtube_audio',
|
183 |
-
}
|
184 |
-
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
185 |
-
ydl.download([url])
|
186 |
-
audio_path = "dl_audio/youtube_audio.wav"
|
187 |
-
if split_model == "htdemucs":
|
188 |
-
command = f"demucs --two-stems=vocals {audio_path} -o output"
|
189 |
-
result = subprocess.run(command.split(), stdout=subprocess.PIPE)
|
190 |
-
print(result.stdout.decode())
|
191 |
-
return "output/htdemucs/youtube_audio/vocals.wav", "output/htdemucs/youtube_audio/no_vocals.wav", audio_path, "output/htdemucs/youtube_audio/vocals.wav"
|
192 |
-
else:
|
193 |
-
command = f"demucs --two-stems=vocals -n mdx_extra_q {audio_path} -o output"
|
194 |
-
result = subprocess.run(command.split(), stdout=subprocess.PIPE)
|
195 |
-
print(result.stdout.decode())
|
196 |
-
return "output/mdx_extra_q/youtube_audio/vocals.wav", "output/mdx_extra_q/youtube_audio/no_vocals.wav", audio_path, "output/mdx_extra_q/youtube_audio/vocals.wav"
|
197 |
-
else:
|
198 |
raise gr.Error("URL Required!")
|
199 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
|
201 |
-
def combine_vocal_and_inst(audio_data,
|
202 |
if not os.path.exists("output/result"):
|
203 |
os.mkdir("output/result")
|
204 |
vocal_path = "output/result/output.wav"
|
205 |
output_path = "output/result/combine.mp3"
|
206 |
-
|
207 |
-
inst_path = "output/htdemucs/youtube_audio/no_vocals.wav"
|
208 |
-
else:
|
209 |
-
inst_path = "output/mdx_extra_q/youtube_audio/no_vocals.wav"
|
210 |
with wave.open(vocal_path, "w") as wave_file:
|
211 |
wave_file.setnchannels(1)
|
212 |
wave_file.setsampwidth(2)
|
213 |
wave_file.setframerate(audio_data[0])
|
214 |
wave_file.writeframes(audio_data[1].tobytes())
|
215 |
-
command = f'ffmpeg -y -i {inst_path} -i {vocal_path} -filter_complex [
|
216 |
result = subprocess.run(command.split(), stdout=subprocess.PIPE)
|
217 |
print(result.stdout.decode())
|
218 |
return output_path
|
@@ -241,12 +263,17 @@ def change_audio_mode(vc_audio_mode):
|
|
241 |
# Youtube
|
242 |
gr.Dropdown.update(visible=False),
|
243 |
gr.Textbox.update(visible=False),
|
|
|
|
|
|
|
244 |
gr.Dropdown.update(visible=False),
|
|
|
245 |
gr.Button.update(visible=False),
|
246 |
gr.Audio.update(visible=False),
|
247 |
gr.Audio.update(visible=False),
|
248 |
gr.Audio.update(visible=False),
|
249 |
gr.Slider.update(visible=False),
|
|
|
250 |
gr.Audio.update(visible=False),
|
251 |
gr.Button.update(visible=False),
|
252 |
# TTS
|
@@ -262,12 +289,17 @@ def change_audio_mode(vc_audio_mode):
|
|
262 |
# Youtube
|
263 |
gr.Dropdown.update(visible=False),
|
264 |
gr.Textbox.update(visible=False),
|
|
|
|
|
|
|
265 |
gr.Dropdown.update(visible=False),
|
|
|
266 |
gr.Button.update(visible=False),
|
267 |
gr.Audio.update(visible=False),
|
268 |
gr.Audio.update(visible=False),
|
269 |
gr.Audio.update(visible=False),
|
270 |
gr.Slider.update(visible=False),
|
|
|
271 |
gr.Audio.update(visible=False),
|
272 |
gr.Button.update(visible=False),
|
273 |
# TTS
|
@@ -283,12 +315,17 @@ def change_audio_mode(vc_audio_mode):
|
|
283 |
# Youtube
|
284 |
gr.Dropdown.update(visible=True),
|
285 |
gr.Textbox.update(visible=True),
|
|
|
|
|
|
|
286 |
gr.Dropdown.update(visible=True),
|
|
|
287 |
gr.Button.update(visible=True),
|
288 |
gr.Audio.update(visible=True),
|
289 |
gr.Audio.update(visible=True),
|
290 |
gr.Audio.update(visible=True),
|
291 |
gr.Slider.update(visible=True),
|
|
|
292 |
gr.Audio.update(visible=True),
|
293 |
gr.Button.update(visible=True),
|
294 |
# TTS
|
@@ -304,38 +341,22 @@ def change_audio_mode(vc_audio_mode):
|
|
304 |
# Youtube
|
305 |
gr.Dropdown.update(visible=False),
|
306 |
gr.Textbox.update(visible=False),
|
307 |
-
gr.Dropdown.update(visible=False),
|
308 |
-
gr.Button.update(visible=False),
|
309 |
-
gr.Audio.update(visible=False),
|
310 |
-
gr.Audio.update(visible=False),
|
311 |
-
gr.Audio.update(visible=False),
|
312 |
-
gr.Slider.update(visible=False),
|
313 |
-
gr.Audio.update(visible=False),
|
314 |
-
gr.Button.update(visible=False),
|
315 |
-
# TTS
|
316 |
-
gr.Textbox.update(visible=True),
|
317 |
-
gr.Dropdown.update(visible=True)
|
318 |
-
)
|
319 |
-
else:
|
320 |
-
return (
|
321 |
-
# Input & Upload
|
322 |
gr.Textbox.update(visible=False),
|
323 |
-
gr.
|
324 |
-
|
325 |
-
# Youtube
|
326 |
gr.Dropdown.update(visible=False),
|
327 |
gr.Textbox.update(visible=False),
|
328 |
-
gr.Dropdown.update(visible=False),
|
329 |
gr.Button.update(visible=False),
|
330 |
gr.Audio.update(visible=False),
|
331 |
gr.Audio.update(visible=False),
|
332 |
gr.Audio.update(visible=False),
|
333 |
gr.Slider.update(visible=False),
|
|
|
334 |
gr.Audio.update(visible=False),
|
335 |
gr.Button.update(visible=False),
|
336 |
# TTS
|
337 |
-
gr.Textbox.update(visible=
|
338 |
-
gr.Dropdown.update(visible=
|
339 |
)
|
340 |
|
341 |
def use_microphone(microphone):
|
@@ -358,6 +379,12 @@ if __name__ == '__main__':
|
|
358 |
"</div>\n\n"+
|
359 |
"[![Repository](https://img.shields.io/badge/Github-Multi%20Model%20RVC%20Inference-blue?style=for-the-badge&logo=github)](https://github.com/ArkanDash/Multi-Model-RVC-Inference)"
|
360 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
361 |
for (folder_title, folder, description, models) in categories:
|
362 |
with gr.TabItem(folder_title):
|
363 |
if description:
|
@@ -365,7 +392,7 @@ if __name__ == '__main__':
|
|
365 |
with gr.Tabs():
|
366 |
if not models:
|
367 |
gr.Markdown("# <center> No Model Loaded.")
|
368 |
-
gr.Markdown("## <center> Please add model or fix your model path.")
|
369 |
continue
|
370 |
for (name, title, author, cover, model_version, vc_fn) in models:
|
371 |
with gr.TabItem(name):
|
@@ -379,92 +406,212 @@ if __name__ == '__main__':
|
|
379 |
'</div>'
|
380 |
)
|
381 |
with gr.Row():
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
468 |
vc_convert.click(
|
469 |
fn=vc_fn,
|
470 |
inputs=[
|
@@ -483,14 +630,19 @@ if __name__ == '__main__':
|
|
483 |
],
|
484 |
outputs=[vc_log ,vc_output]
|
485 |
)
|
|
|
|
|
|
|
|
|
|
|
486 |
vc_split.click(
|
487 |
fn=cut_vocal_and_inst,
|
488 |
-
inputs=[
|
489 |
-
outputs=[vc_vocal_preview, vc_inst_preview,
|
490 |
)
|
491 |
vc_combine.click(
|
492 |
fn=combine_vocal_and_inst,
|
493 |
-
inputs=[vc_output,
|
494 |
outputs=[vc_combined_output]
|
495 |
)
|
496 |
vc_microphone_mode.change(
|
@@ -507,12 +659,16 @@ if __name__ == '__main__':
|
|
507 |
vc_upload,
|
508 |
vc_download_audio,
|
509 |
vc_link,
|
|
|
|
|
510 |
vc_split_model,
|
|
|
511 |
vc_split,
|
|
|
512 |
vc_vocal_preview,
|
513 |
vc_inst_preview,
|
514 |
-
|
515 |
-
|
516 |
vc_combined_output,
|
517 |
vc_combine,
|
518 |
tts_text,
|
|
|
27 |
from config import Config
|
28 |
config = Config()
|
29 |
logging.getLogger("numba").setLevel(logging.WARNING)
|
30 |
+
spaces = os.getenv("SYSTEM") == "spaces"
|
31 |
+
force_support = None
|
32 |
+
if config.unsupported is False:
|
33 |
+
if config.device == "mps" or config.device == "cpu":
|
34 |
+
force_support = False
|
35 |
+
else:
|
36 |
+
force_support = True
|
37 |
|
38 |
audio_mode = []
|
39 |
f0method_mode = []
|
40 |
f0method_info = ""
|
41 |
|
42 |
+
if force_support is False or spaces is True:
|
43 |
+
if spaces is True:
|
44 |
+
audio_mode = ["Upload audio", "TTS Audio"]
|
45 |
+
else:
|
46 |
+
audio_mode = ["Input path", "Upload audio", "TTS Audio"]
|
47 |
f0method_mode = ["pm", "harvest"]
|
48 |
f0method_info = "PM is fast, Harvest is good but extremely slow, Rvmpe is alternative to harvest (might be better). (Default: PM)"
|
49 |
else:
|
|
|
70 |
protect,
|
71 |
):
|
72 |
try:
|
73 |
+
logs = []
|
74 |
print(f"Converting using {model_name}...")
|
75 |
+
logs.append(f"Converting using {model_name}...")
|
76 |
+
yield "\n".join(logs), None
|
77 |
if vc_audio_mode == "Input path" or "Youtube" and vc_input != "":
|
78 |
audio, sr = librosa.load(vc_input, sr=16000, mono=True)
|
79 |
elif vc_audio_mode == "Upload audio":
|
|
|
81 |
return "You need to upload an audio", None
|
82 |
sampling_rate, audio = vc_upload
|
83 |
duration = audio.shape[0] / sampling_rate
|
84 |
+
if duration > 20 and spaces:
|
85 |
return "Please upload an audio file that is less than 20 seconds. If you need to generate a longer audio file, please use Colab.", None
|
86 |
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
|
87 |
if len(audio.shape) > 1:
|
|
|
89 |
if sampling_rate != 16000:
|
90 |
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
|
91 |
elif vc_audio_mode == "TTS Audio":
|
92 |
+
if len(tts_text) > 100 and spaces:
|
93 |
return "Text is too long", None
|
94 |
if tts_text is None or tts_voice is None:
|
95 |
return "You need to enter text and select a voice", None
|
|
|
121 |
)
|
122 |
info = f"[{datetime.now().strftime('%Y-%m-%d %H:%M')}]: npy: {times[0]}, f0: {times[1]}s, infer: {times[2]}s"
|
123 |
print(f"{model_name} | {info}")
|
124 |
+
logs.append(f"Successfully Convert {model_name}\n{info}")
|
125 |
+
yield "\n".join(logs), (tgt_sr, audio_opt)
|
126 |
except:
|
127 |
info = traceback.format_exc()
|
128 |
print(info)
|
129 |
+
yield info, None
|
130 |
return vc_fn
|
131 |
|
132 |
def load_model():
|
133 |
categories = []
|
134 |
+
if os.path.isfile("weights/folder_info.json"):
|
135 |
+
with open("weights/folder_info.json", "r", encoding="utf-8") as f:
|
136 |
+
folder_info = json.load(f)
|
137 |
+
for category_name, category_info in folder_info.items():
|
138 |
+
if not category_info['enable']:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
continue
|
140 |
+
category_title = category_info['title']
|
141 |
+
category_folder = category_info['folder_path']
|
142 |
+
description = category_info['description']
|
143 |
+
models = []
|
144 |
+
with open(f"weights/{category_folder}/model_info.json", "r", encoding="utf-8") as f:
|
145 |
+
models_info = json.load(f)
|
146 |
+
for character_name, info in models_info.items():
|
147 |
+
if not info['enable']:
|
148 |
+
continue
|
149 |
+
model_title = info['title']
|
150 |
+
model_name = info['model_path']
|
151 |
+
model_author = info.get("author", None)
|
152 |
+
model_cover = f"weights/{category_folder}/{character_name}/{info['cover']}"
|
153 |
+
model_index = f"weights/{category_folder}/{character_name}/{info['feature_retrieval_library']}"
|
154 |
+
cpt = torch.load(f"weights/{category_folder}/{character_name}/{model_name}", map_location="cpu")
|
155 |
+
tgt_sr = cpt["config"][-1]
|
156 |
+
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
|
157 |
+
if_f0 = cpt.get("f0", 1)
|
158 |
+
version = cpt.get("version", "v1")
|
159 |
+
if version == "v1":
|
160 |
+
if if_f0 == 1:
|
161 |
+
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
|
162 |
+
else:
|
163 |
+
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
|
164 |
+
model_version = "V1"
|
165 |
+
elif version == "v2":
|
166 |
+
if if_f0 == 1:
|
167 |
+
net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half)
|
168 |
+
else:
|
169 |
+
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
|
170 |
+
model_version = "V2"
|
171 |
+
del net_g.enc_q
|
172 |
+
print(net_g.load_state_dict(cpt["weight"], strict=False))
|
173 |
+
net_g.eval().to(config.device)
|
174 |
+
if config.is_half:
|
175 |
+
net_g = net_g.half()
|
176 |
else:
|
177 |
+
net_g = net_g.float()
|
178 |
+
vc = VC(tgt_sr, config)
|
179 |
+
print(f"Model loaded: {character_name} / {info['feature_retrieval_library']} | ({model_version})")
|
180 |
+
models.append((character_name, model_title, model_author, model_cover, model_version, create_vc_fn(model_name, tgt_sr, net_g, vc, if_f0, version, model_index)))
|
181 |
+
categories.append([category_title, category_folder, description, models])
|
182 |
+
else:
|
183 |
+
categories = []
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
return categories
|
185 |
|
186 |
+
def download_audio(url, audio_provider):
|
187 |
+
logs = []
|
188 |
+
if url == "":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
raise gr.Error("URL Required!")
|
190 |
+
return "URL Required"
|
191 |
+
if not os.path.exists("dl_audio"):
|
192 |
+
os.mkdir("dl_audio")
|
193 |
+
if audio_provider == "Youtube":
|
194 |
+
logs.append("Downloading the audio...")
|
195 |
+
yield None, "\n".join(logs)
|
196 |
+
ydl_opts = {
|
197 |
+
'noplaylist': True,
|
198 |
+
'format': 'bestaudio/best',
|
199 |
+
'postprocessors': [{
|
200 |
+
'key': 'FFmpegExtractAudio',
|
201 |
+
'preferredcodec': 'wav',
|
202 |
+
}],
|
203 |
+
"outtmpl": 'dl_audio/audio',
|
204 |
+
}
|
205 |
+
audio_path = "dl_audio/audio.wav"
|
206 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
207 |
+
ydl.download([url])
|
208 |
+
logs.append("Download Complete.")
|
209 |
+
yield audio_path, "\n".join(logs)
|
210 |
+
|
211 |
+
def cut_vocal_and_inst(split_model):
|
212 |
+
logs = []
|
213 |
+
logs.append("Starting the audio splitting process...")
|
214 |
+
yield "\n".join(logs), None, None, None, None
|
215 |
+
command = f"demucs --two-stems=vocals -n {split_model} dl_audio/audio.wav -o output"
|
216 |
+
result = subprocess.Popen(command.split(), stdout=subprocess.PIPE, text=True)
|
217 |
+
for line in result.stdout:
|
218 |
+
logs.append(line)
|
219 |
+
yield "\n".join(logs), None, None, None, None
|
220 |
+
print(result.stdout)
|
221 |
+
vocal = f"output/{split_model}/audio/vocals.wav"
|
222 |
+
inst = f"output/{split_model}/audio/no_vocals.wav"
|
223 |
+
logs.append("Audio splitting complete.")
|
224 |
+
yield "\n".join(logs), vocal, inst, vocal
|
225 |
|
226 |
+
def combine_vocal_and_inst(audio_data, vocal_volume, inst_volume, split_model):
|
227 |
if not os.path.exists("output/result"):
|
228 |
os.mkdir("output/result")
|
229 |
vocal_path = "output/result/output.wav"
|
230 |
output_path = "output/result/combine.mp3"
|
231 |
+
inst_path = f"output/{split_model}/audio/no_vocals.wav"
|
|
|
|
|
|
|
232 |
with wave.open(vocal_path, "w") as wave_file:
|
233 |
wave_file.setnchannels(1)
|
234 |
wave_file.setsampwidth(2)
|
235 |
wave_file.setframerate(audio_data[0])
|
236 |
wave_file.writeframes(audio_data[1].tobytes())
|
237 |
+
command = f'ffmpeg -y -i {inst_path} -i {vocal_path} -filter_complex [0:a]volume={inst_volume}[i];[1:a]volume={vocal_volume}[v];[i][v]amix=inputs=2:duration=longest[a] -map [a] -b:a 320k -c:a libmp3lame {output_path}'
|
238 |
result = subprocess.run(command.split(), stdout=subprocess.PIPE)
|
239 |
print(result.stdout.decode())
|
240 |
return output_path
|
|
|
263 |
# Youtube
|
264 |
gr.Dropdown.update(visible=False),
|
265 |
gr.Textbox.update(visible=False),
|
266 |
+
gr.Textbox.update(visible=False),
|
267 |
+
gr.Button.update(visible=False),
|
268 |
+
# Splitter
|
269 |
gr.Dropdown.update(visible=False),
|
270 |
+
gr.Textbox.update(visible=False),
|
271 |
gr.Button.update(visible=False),
|
272 |
gr.Audio.update(visible=False),
|
273 |
gr.Audio.update(visible=False),
|
274 |
gr.Audio.update(visible=False),
|
275 |
gr.Slider.update(visible=False),
|
276 |
+
gr.Slider.update(visible=False),
|
277 |
gr.Audio.update(visible=False),
|
278 |
gr.Button.update(visible=False),
|
279 |
# TTS
|
|
|
289 |
# Youtube
|
290 |
gr.Dropdown.update(visible=False),
|
291 |
gr.Textbox.update(visible=False),
|
292 |
+
gr.Textbox.update(visible=False),
|
293 |
+
gr.Button.update(visible=False),
|
294 |
+
# Splitter
|
295 |
gr.Dropdown.update(visible=False),
|
296 |
+
gr.Textbox.update(visible=False),
|
297 |
gr.Button.update(visible=False),
|
298 |
gr.Audio.update(visible=False),
|
299 |
gr.Audio.update(visible=False),
|
300 |
gr.Audio.update(visible=False),
|
301 |
gr.Slider.update(visible=False),
|
302 |
+
gr.Slider.update(visible=False),
|
303 |
gr.Audio.update(visible=False),
|
304 |
gr.Button.update(visible=False),
|
305 |
# TTS
|
|
|
315 |
# Youtube
|
316 |
gr.Dropdown.update(visible=True),
|
317 |
gr.Textbox.update(visible=True),
|
318 |
+
gr.Textbox.update(visible=True),
|
319 |
+
gr.Button.update(visible=True),
|
320 |
+
# Splitter
|
321 |
gr.Dropdown.update(visible=True),
|
322 |
+
gr.Textbox.update(visible=True),
|
323 |
gr.Button.update(visible=True),
|
324 |
gr.Audio.update(visible=True),
|
325 |
gr.Audio.update(visible=True),
|
326 |
gr.Audio.update(visible=True),
|
327 |
gr.Slider.update(visible=True),
|
328 |
+
gr.Slider.update(visible=True),
|
329 |
gr.Audio.update(visible=True),
|
330 |
gr.Button.update(visible=True),
|
331 |
# TTS
|
|
|
341 |
# Youtube
|
342 |
gr.Dropdown.update(visible=False),
|
343 |
gr.Textbox.update(visible=False),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
344 |
gr.Textbox.update(visible=False),
|
345 |
+
gr.Button.update(visible=False),
|
346 |
+
# Splitter
|
|
|
347 |
gr.Dropdown.update(visible=False),
|
348 |
gr.Textbox.update(visible=False),
|
|
|
349 |
gr.Button.update(visible=False),
|
350 |
gr.Audio.update(visible=False),
|
351 |
gr.Audio.update(visible=False),
|
352 |
gr.Audio.update(visible=False),
|
353 |
gr.Slider.update(visible=False),
|
354 |
+
gr.Slider.update(visible=False),
|
355 |
gr.Audio.update(visible=False),
|
356 |
gr.Button.update(visible=False),
|
357 |
# TTS
|
358 |
+
gr.Textbox.update(visible=True),
|
359 |
+
gr.Dropdown.update(visible=True)
|
360 |
)
|
361 |
|
362 |
def use_microphone(microphone):
|
|
|
379 |
"</div>\n\n"+
|
380 |
"[![Repository](https://img.shields.io/badge/Github-Multi%20Model%20RVC%20Inference-blue?style=for-the-badge&logo=github)](https://github.com/ArkanDash/Multi-Model-RVC-Inference)"
|
381 |
)
|
382 |
+
if categories == []:
|
383 |
+
gr.Markdown(
|
384 |
+
"<div align='center'>\n\n"+
|
385 |
+
"## No model found, please add the model into weights folder\n\n"+
|
386 |
+
"</div>"
|
387 |
+
)
|
388 |
for (folder_title, folder, description, models) in categories:
|
389 |
with gr.TabItem(folder_title):
|
390 |
if description:
|
|
|
392 |
with gr.Tabs():
|
393 |
if not models:
|
394 |
gr.Markdown("# <center> No Model Loaded.")
|
395 |
+
gr.Markdown("## <center> Please add the model or fix your model path.")
|
396 |
continue
|
397 |
for (name, title, author, cover, model_version, vc_fn) in models:
|
398 |
with gr.TabItem(name):
|
|
|
406 |
'</div>'
|
407 |
)
|
408 |
with gr.Row():
|
409 |
+
if spaces is False:
|
410 |
+
with gr.TabItem("Input"):
|
411 |
+
with gr.Row():
|
412 |
+
with gr.Column():
|
413 |
+
vc_audio_mode = gr.Dropdown(label="Input voice", choices=audio_mode, allow_custom_value=False, value="Upload audio")
|
414 |
+
# Input
|
415 |
+
vc_input = gr.Textbox(label="Input audio path", visible=False)
|
416 |
+
# Upload
|
417 |
+
vc_microphone_mode = gr.Checkbox(label="Use Microphone", value=False, visible=True, interactive=True)
|
418 |
+
vc_upload = gr.Audio(label="Upload audio file", source="upload", visible=True, interactive=True)
|
419 |
+
# Youtube
|
420 |
+
vc_download_audio = gr.Dropdown(label="Provider", choices=["Youtube"], allow_custom_value=False, visible=False, value="Youtube", info="Select provider (Default: Youtube)")
|
421 |
+
vc_link = gr.Textbox(label="Youtube URL", visible=False, info="Example: https://www.youtube.com/watch?v=Nc0sB1Bmf-A", placeholder="https://www.youtube.com/watch?v=...")
|
422 |
+
vc_log_yt = gr.Textbox(label="Output Information", visible=False, interactive=False)
|
423 |
+
vc_download_button = gr.Button("Download Audio", variant="primary", visible=False)
|
424 |
+
vc_audio_preview = gr.Audio(label="Audio Preview", visible=False)
|
425 |
+
# TTS
|
426 |
+
tts_text = gr.Textbox(label="TTS text", info="Text to speech input", visible=False)
|
427 |
+
tts_voice = gr.Dropdown(label="Edge-tts speaker", choices=voices, visible=False, allow_custom_value=False, value="en-US-AnaNeural-Female")
|
428 |
+
with gr.Column():
|
429 |
+
vc_split_model = gr.Dropdown(label="Splitter Model", choices=["hdemucs_mmi", "htdemucs", "htdemucs_ft", "mdx", "mdx_q", "mdx_extra_q"], allow_custom_value=False, visible=False, value="htdemucs", info="Select the splitter model (Default: htdemucs)")
|
430 |
+
vc_split_log = gr.Textbox(label="Output Information", visible=False, interactive=False)
|
431 |
+
vc_split = gr.Button("Split Audio", variant="primary", visible=False)
|
432 |
+
vc_vocal_preview = gr.Audio(label="Vocal Preview", visible=False)
|
433 |
+
vc_inst_preview = gr.Audio(label="Instrumental Preview", visible=False)
|
434 |
+
with gr.TabItem("Convert"):
|
435 |
+
with gr.Row():
|
436 |
+
with gr.Column():
|
437 |
+
vc_transform0 = gr.Number(label="Transpose", value=0, info='Type "12" to change from male to female voice. Type "-12" to change female to male voice')
|
438 |
+
f0method0 = gr.Radio(
|
439 |
+
label="Pitch extraction algorithm",
|
440 |
+
info=f0method_info,
|
441 |
+
choices=f0method_mode,
|
442 |
+
value="pm",
|
443 |
+
interactive=True
|
444 |
+
)
|
445 |
+
index_rate1 = gr.Slider(
|
446 |
+
minimum=0,
|
447 |
+
maximum=1,
|
448 |
+
label="Retrieval feature ratio",
|
449 |
+
info="(Default: 0.7)",
|
450 |
+
value=0.7,
|
451 |
+
interactive=True,
|
452 |
+
)
|
453 |
+
filter_radius0 = gr.Slider(
|
454 |
+
minimum=0,
|
455 |
+
maximum=7,
|
456 |
+
label="Apply Median Filtering",
|
457 |
+
info="The value represents the filter radius and can reduce breathiness.",
|
458 |
+
value=3,
|
459 |
+
step=1,
|
460 |
+
interactive=True,
|
461 |
+
)
|
462 |
+
resample_sr0 = gr.Slider(
|
463 |
+
minimum=0,
|
464 |
+
maximum=48000,
|
465 |
+
label="Resample the output audio",
|
466 |
+
info="Resample the output audio in post-processing to the final sample rate. Set to 0 for no resampling",
|
467 |
+
value=0,
|
468 |
+
step=1,
|
469 |
+
interactive=True,
|
470 |
+
)
|
471 |
+
rms_mix_rate0 = gr.Slider(
|
472 |
+
minimum=0,
|
473 |
+
maximum=1,
|
474 |
+
label="Volume Envelope",
|
475 |
+
info="Use the volume envelope of the input to replace or mix with the volume envelope of the output. The closer the ratio is to 1, the more the output envelope is used",
|
476 |
+
value=1,
|
477 |
+
interactive=True,
|
478 |
+
)
|
479 |
+
protect0 = gr.Slider(
|
480 |
+
minimum=0,
|
481 |
+
maximum=0.5,
|
482 |
+
label="Voice Protection",
|
483 |
+
info="Protect voiceless consonants and breath sounds to prevent artifacts such as tearing in electronic music. Set to 0.5 to disable. Decrease the value to increase protection, but it may reduce indexing accuracy",
|
484 |
+
value=0.5,
|
485 |
+
step=0.01,
|
486 |
+
interactive=True,
|
487 |
+
)
|
488 |
+
with gr.Column():
|
489 |
+
vc_log = gr.Textbox(label="Output Information", interactive=False)
|
490 |
+
vc_output = gr.Audio(label="Output Audio", interactive=False)
|
491 |
+
vc_convert = gr.Button("Convert", variant="primary")
|
492 |
+
vc_vocal_volume = gr.Slider(
|
493 |
+
minimum=0,
|
494 |
+
maximum=10,
|
495 |
+
label="Vocal volume",
|
496 |
+
value=1,
|
497 |
+
interactive=True,
|
498 |
+
step=1,
|
499 |
+
info="Adjust vocal volume (Default: 1}",
|
500 |
+
visible=False
|
501 |
+
)
|
502 |
+
vc_inst_volume = gr.Slider(
|
503 |
+
minimum=0,
|
504 |
+
maximum=10,
|
505 |
+
label="Instrument volume",
|
506 |
+
value=1,
|
507 |
+
interactive=True,
|
508 |
+
step=1,
|
509 |
+
info="Adjust instrument volume (Default: 1}",
|
510 |
+
visible=False
|
511 |
+
)
|
512 |
+
vc_combined_output = gr.Audio(label="Output Combined Audio", visible=False)
|
513 |
+
vc_combine = gr.Button("Combine",variant="primary", visible=False)
|
514 |
+
else:
|
515 |
+
with gr.Column():
|
516 |
+
vc_audio_mode = gr.Dropdown(label="Input voice", choices=audio_mode, allow_custom_value=False, value="Upload audio")
|
517 |
+
# Input
|
518 |
+
vc_input = gr.Textbox(label="Input audio path", visible=False)
|
519 |
+
# Upload
|
520 |
+
vc_microphone_mode = gr.Checkbox(label="Use Microphone", value=False, visible=True, interactive=True)
|
521 |
+
vc_upload = gr.Audio(label="Upload audio file", source="upload", visible=True, interactive=True)
|
522 |
+
# Youtube
|
523 |
+
vc_download_audio = gr.Dropdown(label="Provider", choices=["Youtube"], allow_custom_value=False, visible=False, value="Youtube", info="Select provider (Default: Youtube)")
|
524 |
+
vc_link = gr.Textbox(label="Youtube URL", visible=False, info="Example: https://www.youtube.com/watch?v=Nc0sB1Bmf-A", placeholder="https://www.youtube.com/watch?v=...")
|
525 |
+
vc_log_yt = gr.Textbox(label="Output Information", visible=False, interactive=False)
|
526 |
+
vc_download_button = gr.Button("Download Audio", variant="primary", visible=False)
|
527 |
+
vc_audio_preview = gr.Audio(label="Audio Preview", visible=False)
|
528 |
+
# Splitter
|
529 |
+
vc_split_model = gr.Dropdown(label="Splitter Model", choices=["hdemucs_mmi", "htdemucs", "htdemucs_ft", "mdx", "mdx_q", "mdx_extra_q"], allow_custom_value=False, visible=False, value="htdemucs", info="Select the splitter model (Default: htdemucs)")
|
530 |
+
vc_split_log = gr.Textbox(label="Output Information", visible=False, interactive=False)
|
531 |
+
vc_split = gr.Button("Split Audio", variant="primary", visible=False)
|
532 |
+
vc_vocal_preview = gr.Audio(label="Vocal Preview", visible=False)
|
533 |
+
vc_inst_preview = gr.Audio(label="Instrumental Preview", visible=False)
|
534 |
+
# TTS
|
535 |
+
tts_text = gr.Textbox(label="TTS text", info="Text to speech input", visible=False)
|
536 |
+
tts_voice = gr.Dropdown(label="Edge-tts speaker", choices=voices, visible=False, allow_custom_value=False, value="en-US-AnaNeural-Female")
|
537 |
+
with gr.Column():
|
538 |
+
vc_transform0 = gr.Number(label="Transpose", value=0, info='Type "12" to change from male to female voice. Type "-12" to change female to male voice')
|
539 |
+
f0method0 = gr.Radio(
|
540 |
+
label="Pitch extraction algorithm",
|
541 |
+
info=f0method_info,
|
542 |
+
choices=f0method_mode,
|
543 |
+
value="pm",
|
544 |
+
interactive=True
|
545 |
+
)
|
546 |
+
index_rate1 = gr.Slider(
|
547 |
+
minimum=0,
|
548 |
+
maximum=1,
|
549 |
+
label="Retrieval feature ratio",
|
550 |
+
info="(Default: 0.7)",
|
551 |
+
value=0.7,
|
552 |
+
interactive=True,
|
553 |
+
)
|
554 |
+
filter_radius0 = gr.Slider(
|
555 |
+
minimum=0,
|
556 |
+
maximum=7,
|
557 |
+
label="Apply Median Filtering",
|
558 |
+
info="The value represents the filter radius and can reduce breathiness.",
|
559 |
+
value=3,
|
560 |
+
step=1,
|
561 |
+
interactive=True,
|
562 |
+
)
|
563 |
+
resample_sr0 = gr.Slider(
|
564 |
+
minimum=0,
|
565 |
+
maximum=48000,
|
566 |
+
label="Resample the output audio",
|
567 |
+
info="Resample the output audio in post-processing to the final sample rate. Set to 0 for no resampling",
|
568 |
+
value=0,
|
569 |
+
step=1,
|
570 |
+
interactive=True,
|
571 |
+
)
|
572 |
+
rms_mix_rate0 = gr.Slider(
|
573 |
+
minimum=0,
|
574 |
+
maximum=1,
|
575 |
+
label="Volume Envelope",
|
576 |
+
info="Use the volume envelope of the input to replace or mix with the volume envelope of the output. The closer the ratio is to 1, the more the output envelope is used",
|
577 |
+
value=1,
|
578 |
+
interactive=True,
|
579 |
+
)
|
580 |
+
protect0 = gr.Slider(
|
581 |
+
minimum=0,
|
582 |
+
maximum=0.5,
|
583 |
+
label="Voice Protection",
|
584 |
+
info="Protect voiceless consonants and breath sounds to prevent artifacts such as tearing in electronic music. Set to 0.5 to disable. Decrease the value to increase protection, but it may reduce indexing accuracy",
|
585 |
+
value=0.5,
|
586 |
+
step=0.01,
|
587 |
+
interactive=True,
|
588 |
+
)
|
589 |
+
with gr.Column():
|
590 |
+
vc_log = gr.Textbox(label="Output Information", interactive=False)
|
591 |
+
vc_output = gr.Audio(label="Output Audio", interactive=False)
|
592 |
+
vc_convert = gr.Button("Convert", variant="primary")
|
593 |
+
vc_vocal_volume = gr.Slider(
|
594 |
+
minimum=0,
|
595 |
+
maximum=10,
|
596 |
+
label="Vocal volume",
|
597 |
+
value=1,
|
598 |
+
interactive=True,
|
599 |
+
step=1,
|
600 |
+
info="Adjust vocal volume (Default: 1}",
|
601 |
+
visible=False
|
602 |
+
)
|
603 |
+
vc_inst_volume = gr.Slider(
|
604 |
+
minimum=0,
|
605 |
+
maximum=10,
|
606 |
+
label="Instrument volume",
|
607 |
+
value=1,
|
608 |
+
interactive=True,
|
609 |
+
step=1,
|
610 |
+
info="Adjust instrument volume (Default: 1}",
|
611 |
+
visible=False
|
612 |
+
)
|
613 |
+
vc_combined_output = gr.Audio(label="Output Combined Audio", visible=False)
|
614 |
+
vc_combine = gr.Button("Combine",variant="primary", visible=False)
|
615 |
vc_convert.click(
|
616 |
fn=vc_fn,
|
617 |
inputs=[
|
|
|
630 |
],
|
631 |
outputs=[vc_log ,vc_output]
|
632 |
)
|
633 |
+
vc_download_button.click(
|
634 |
+
fn=download_audio,
|
635 |
+
inputs=[vc_link, vc_download_audio],
|
636 |
+
outputs=[vc_audio_preview, vc_log_yt]
|
637 |
+
)
|
638 |
vc_split.click(
|
639 |
fn=cut_vocal_and_inst,
|
640 |
+
inputs=[vc_split_model],
|
641 |
+
outputs=[vc_split_log, vc_vocal_preview, vc_inst_preview, vc_input]
|
642 |
)
|
643 |
vc_combine.click(
|
644 |
fn=combine_vocal_and_inst,
|
645 |
+
inputs=[vc_output, vc_vocal_volume, vc_inst_volume, vc_split_model],
|
646 |
outputs=[vc_combined_output]
|
647 |
)
|
648 |
vc_microphone_mode.change(
|
|
|
659 |
vc_upload,
|
660 |
vc_download_audio,
|
661 |
vc_link,
|
662 |
+
vc_log_yt,
|
663 |
+
vc_download_button,
|
664 |
vc_split_model,
|
665 |
+
vc_split_log,
|
666 |
vc_split,
|
667 |
+
vc_audio_preview,
|
668 |
vc_vocal_preview,
|
669 |
vc_inst_preview,
|
670 |
+
vc_vocal_volume,
|
671 |
+
vc_inst_volume,
|
672 |
vc_combined_output,
|
673 |
vc_combine,
|
674 |
tts_text,
|
config.py
CHANGED
@@ -11,42 +11,24 @@ class Config:
|
|
11 |
self.gpu_name = None
|
12 |
self.gpu_mem = None
|
13 |
(
|
14 |
-
self.python_cmd,
|
15 |
-
self.listen_port,
|
16 |
self.colab,
|
17 |
-
self.
|
18 |
-
self.
|
19 |
-
self.api
|
20 |
) = self.arg_parse()
|
21 |
self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config()
|
22 |
|
23 |
@staticmethod
|
24 |
def arg_parse() -> tuple:
|
25 |
-
exe = sys.executable or "python"
|
26 |
parser = argparse.ArgumentParser()
|
27 |
-
parser.add_argument("--port", type=int, default=7865, help="Listen port")
|
28 |
-
parser.add_argument("--pycmd", type=str, default=exe, help="Python command")
|
29 |
parser.add_argument("--colab", action="store_true", help="Launch in colab")
|
30 |
-
parser.add_argument(
|
31 |
-
"--noparallel", action="store_true", help="Disable parallel processing"
|
32 |
-
)
|
33 |
-
parser.add_argument(
|
34 |
-
"--noautoopen",
|
35 |
-
action="store_true",
|
36 |
-
help="Do not open in browser automatically",
|
37 |
-
)
|
38 |
parser.add_argument("--api", action="store_true", help="Launch with api")
|
|
|
39 |
cmd_opts = parser.parse_args()
|
40 |
|
41 |
-
cmd_opts.port = cmd_opts.port if 0 <= cmd_opts.port <= 65535 else 7865
|
42 |
-
|
43 |
return (
|
44 |
-
cmd_opts.pycmd,
|
45 |
-
cmd_opts.port,
|
46 |
cmd_opts.colab,
|
47 |
-
cmd_opts.
|
48 |
-
cmd_opts.
|
49 |
-
cmd_opts.api
|
50 |
)
|
51 |
|
52 |
# has_mps is only available in nightly pytorch (for now) and MasOS 12.3+.
|
@@ -72,10 +54,10 @@ class Config:
|
|
72 |
or "1070" in self.gpu_name
|
73 |
or "1080" in self.gpu_name
|
74 |
):
|
75 |
-
print("Found GPU", self.gpu_name, ", force to fp32")
|
76 |
self.is_half = False
|
77 |
else:
|
78 |
-
print("Found GPU", self.gpu_name)
|
79 |
self.gpu_mem = int(
|
80 |
torch.cuda.get_device_properties(i_device).total_memory
|
81 |
/ 1024
|
@@ -84,11 +66,11 @@ class Config:
|
|
84 |
+ 0.4
|
85 |
)
|
86 |
elif self.has_mps():
|
87 |
-
print("No supported Nvidia GPU found, use MPS instead")
|
88 |
self.device = "mps"
|
89 |
self.is_half = False
|
90 |
else:
|
91 |
-
print("No supported Nvidia GPU found, use CPU instead")
|
92 |
self.device = "cpu"
|
93 |
self.is_half = False
|
94 |
|
|
|
11 |
self.gpu_name = None
|
12 |
self.gpu_mem = None
|
13 |
(
|
|
|
|
|
14 |
self.colab,
|
15 |
+
self.api,
|
16 |
+
self.unsupported
|
|
|
17 |
) = self.arg_parse()
|
18 |
self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config()
|
19 |
|
20 |
@staticmethod
|
21 |
def arg_parse() -> tuple:
|
|
|
22 |
parser = argparse.ArgumentParser()
|
|
|
|
|
23 |
parser.add_argument("--colab", action="store_true", help="Launch in colab")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
parser.add_argument("--api", action="store_true", help="Launch with api")
|
25 |
+
parser.add_argument("--unsupported", action="store_true", help="Enable unsupported feature")
|
26 |
cmd_opts = parser.parse_args()
|
27 |
|
|
|
|
|
28 |
return (
|
|
|
|
|
29 |
cmd_opts.colab,
|
30 |
+
cmd_opts.api,
|
31 |
+
cmd_opts.unsupported
|
|
|
32 |
)
|
33 |
|
34 |
# has_mps is only available in nightly pytorch (for now) and MasOS 12.3+.
|
|
|
54 |
or "1070" in self.gpu_name
|
55 |
or "1080" in self.gpu_name
|
56 |
):
|
57 |
+
print("INFO: Found GPU", self.gpu_name, ", force to fp32")
|
58 |
self.is_half = False
|
59 |
else:
|
60 |
+
print("INFO: Found GPU", self.gpu_name)
|
61 |
self.gpu_mem = int(
|
62 |
torch.cuda.get_device_properties(i_device).total_memory
|
63 |
/ 1024
|
|
|
66 |
+ 0.4
|
67 |
)
|
68 |
elif self.has_mps():
|
69 |
+
print("INFO: No supported Nvidia GPU found, use MPS instead")
|
70 |
self.device = "mps"
|
71 |
self.is_half = False
|
72 |
else:
|
73 |
+
print("INFO: No supported Nvidia GPU found, use CPU instead")
|
74 |
self.device = "cpu"
|
75 |
self.is_half = False
|
76 |
|