Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,121 +1,270 @@
|
|
1 |
-
from flask import Flask,render_template, request, jsonify, send_from_directory
|
2 |
-
from flask_cors import CORS
|
|
|
|
|
3 |
from deepface import DeepFace
|
|
|
4 |
import os
|
5 |
import tempfile
|
6 |
import shutil
|
7 |
import uuid
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
@app.route('/verify', methods=['POST'])
|
36 |
-
def verify_faces():
|
37 |
-
if 'image1' not in request.files or 'image2' not in request.files:
|
38 |
-
return jsonify({'error': 'Deux images sont requises pour la comparaison.'}), 400
|
39 |
-
|
40 |
-
image1 = request.files['image1']
|
41 |
-
image2 = request.files['image2']
|
42 |
-
|
43 |
-
if image1.filename == '' or image2.filename == '':
|
44 |
-
return jsonify({'error': 'Les noms de fichiers ne peuvent pas être vides.'}), 400
|
45 |
-
|
46 |
-
if image1 and allowed_file(image1.filename) and image2 and allowed_file(image2.filename):
|
47 |
-
temp_dir = tempfile.mkdtemp(dir=app.config['UPLOAD_FOLDER'])
|
48 |
|
49 |
-
#
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
except Exception as e:
|
73 |
-
|
74 |
-
|
75 |
-
shutil.rmtree(temp_dir, ignore_errors=True)
|
76 |
-
return jsonify({'error': str(e)}), 500
|
77 |
-
else:
|
78 |
-
return jsonify({'error': 'Extensions de fichiers non autorisées.'}), 400
|
79 |
-
|
80 |
-
# Route pour l'analyse d'un visage
|
81 |
-
@app.route('/analyze', methods=['POST'])
|
82 |
-
def analyze_face():
|
83 |
-
if 'image' not in request.files:
|
84 |
-
return jsonify({'error': 'Aucune image fournie.'}), 400
|
85 |
-
|
86 |
-
image = request.files['image']
|
87 |
-
|
88 |
-
if image.filename == '':
|
89 |
-
return jsonify({'error': 'Le nom de fichier ne peut pas être vide.'}), 400
|
90 |
-
|
91 |
-
if image and allowed_file(image.filename):
|
92 |
-
temp_dir = tempfile.mkdtemp(dir=app.config['UPLOAD_FOLDER'])
|
93 |
-
image_filename = unique_filename(image.filename)
|
94 |
-
image_path = os.path.join(temp_dir, image_filename)
|
95 |
-
image.save(image_path)
|
96 |
|
97 |
-
|
98 |
-
|
|
|
|
|
99 |
|
100 |
-
|
101 |
-
|
|
|
|
|
|
|
|
|
102 |
|
103 |
-
|
104 |
-
|
105 |
|
106 |
-
|
107 |
-
|
|
|
|
|
|
|
|
|
108 |
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
if __name__ == '__main__':
|
119 |
-
|
120 |
-
os.makedirs(UPLOAD_FOLDER)
|
121 |
app.run(debug=True)
|
|
|
1 |
+
from flask import Flask, render_template, request, jsonify, send_from_directory
|
2 |
+
from flask_cors import CORS
|
3 |
+
from flask_limiter import Limiter
|
4 |
+
from flask_limiter.util import get_remote_address
|
5 |
from deepface import DeepFace
|
6 |
+
from werkzeug.utils import secure_filename
|
7 |
import os
|
8 |
import tempfile
|
9 |
import shutil
|
10 |
import uuid
|
11 |
+
import logging
|
12 |
+
import time
|
13 |
+
from datetime import datetime
|
14 |
+
from functools import wraps
|
15 |
+
import numpy as np
|
16 |
+
import cv2
|
17 |
+
from PIL import Image
|
18 |
+
import io
|
19 |
+
import threading
|
20 |
+
import queue
|
21 |
+
import hashlib
|
22 |
|
23 |
+
# Configuration du logging
|
24 |
+
logging.basicConfig(
|
25 |
+
filename='app.log',
|
26 |
+
level=logging.INFO,
|
27 |
+
format='%(asctime)s - %(levelname)s - %(message)s'
|
28 |
+
)
|
29 |
+
|
30 |
+
class FaceAnalysisApp:
|
31 |
+
def __init__(self):
|
32 |
+
self.app = Flask(__name__, static_folder='static')
|
33 |
+
self.setup_app()
|
34 |
+
|
35 |
+
def setup_app(self):
|
36 |
+
# Configuration de base
|
37 |
+
self.app.config['UPLOAD_FOLDER'] = 'static/uploads'
|
38 |
+
self.app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024
|
39 |
+
self.app.config['ALLOWED_EXTENSIONS'] = {'png', 'jpg', 'jpeg', 'gif'}
|
40 |
+
self.app.config['SECRET_KEY'] = os.urandom(24)
|
41 |
+
|
42 |
+
# Initialisation des composants
|
43 |
+
CORS(self.app)
|
44 |
+
self.limiter = Limiter(
|
45 |
+
self.app,
|
46 |
+
key_func=get_remote_address,
|
47 |
+
default_limits=["200 per day", "50 per hour"]
|
48 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
+
# File d'attente pour le traitement asynchrone
|
51 |
+
self.task_queue = queue.Queue()
|
52 |
+
self.start_worker_thread()
|
53 |
+
|
54 |
+
# Cache pour les résultats
|
55 |
+
self.results_cache = {}
|
56 |
+
|
57 |
+
def start_worker_thread(self):
|
58 |
+
def worker():
|
59 |
+
while True:
|
60 |
+
task = self.task_queue.get()
|
61 |
+
if task is None:
|
62 |
+
break
|
63 |
+
try:
|
64 |
+
task()
|
65 |
+
except Exception as e:
|
66 |
+
logging.error(f"Error in worker thread: {str(e)}")
|
67 |
+
self.task_queue.task_done()
|
68 |
+
|
69 |
+
self.worker_thread = threading.Thread(target=worker, daemon=True)
|
70 |
+
self.worker_thread.start()
|
71 |
|
72 |
+
def timing_decorator(self, f):
|
73 |
+
@wraps(f)
|
74 |
+
def wrap(*args, **kwargs):
|
75 |
+
start = time.time()
|
76 |
+
result = f(*args, **kwargs)
|
77 |
+
end = time.time()
|
78 |
+
logging.info(f'{f.__name__} took {end-start:.2f} seconds to execute')
|
79 |
+
return result
|
80 |
+
return wrap
|
81 |
|
82 |
+
def validate_image(self, image_stream):
|
83 |
+
"""Valide et optimise l'image"""
|
84 |
+
try:
|
85 |
+
img = Image.open(image_stream)
|
86 |
+
|
87 |
+
# Vérification des dimensions
|
88 |
+
if img.size[0] > 2000 or img.size[1] > 2000:
|
89 |
+
img.thumbnail((2000, 2000), Image.LANCZOS)
|
90 |
+
|
91 |
+
# Conversion en RGB si nécessaire
|
92 |
+
if img.mode not in ('RGB', 'L'):
|
93 |
+
img = img.convert('RGB')
|
94 |
+
|
95 |
+
# Optimisation
|
96 |
+
output = io.BytesIO()
|
97 |
+
img.save(output, format='JPEG', quality=85, optimize=True)
|
98 |
+
output.seek(0)
|
99 |
+
|
100 |
+
return output
|
101 |
+
except Exception as e:
|
102 |
+
logging.error(f"Image validation error: {str(e)}")
|
103 |
+
raise ValueError("Invalid image format")
|
104 |
|
105 |
+
def process_face_detection(self, image_path):
|
106 |
+
"""Détection de visage avec mise en cache"""
|
107 |
+
image_hash = hashlib.md5(open(image_path, 'rb').read()).hexdigest()
|
108 |
+
|
109 |
+
if image_hash in self.results_cache:
|
110 |
+
return self.results_cache[image_hash]
|
111 |
+
|
112 |
+
try:
|
113 |
+
result = DeepFace.analyze(
|
114 |
+
img_path=image_path,
|
115 |
+
actions=['age', 'gender', 'race', 'emotion'],
|
116 |
+
enforce_detection=True
|
117 |
+
)
|
118 |
+
self.results_cache[image_hash] = result
|
119 |
+
return result
|
120 |
+
except Exception as e:
|
121 |
+
logging.error(f"Face detection error: {str(e)}")
|
122 |
+
raise
|
123 |
|
124 |
+
@timing_decorator
|
125 |
+
def verify_faces(self, image1_path, image2_path):
|
126 |
+
"""Comparaison des visages avec vérification approfondie"""
|
127 |
+
try:
|
128 |
+
# Vérification initiale de la présence de visages
|
129 |
+
face1 = cv2.imread(image1_path)
|
130 |
+
face2 = cv2.imread(image2_path)
|
131 |
+
if face1 is None or face2 is None:
|
132 |
+
raise ValueError("Unable to read one or both images")
|
133 |
|
134 |
+
result = DeepFace.verify(
|
135 |
+
img1_path=image1_path,
|
136 |
+
img2_path=image2_path,
|
137 |
+
enforce_detection=True,
|
138 |
+
model_name="VGG-Face"
|
139 |
+
)
|
140 |
+
|
141 |
+
# Enrichissement des résultats
|
142 |
+
result['timestamp'] = datetime.now().isoformat()
|
143 |
+
result['confidence_score'] = 1 - result.get('distance', 0)
|
144 |
+
result['processing_time'] = time.time()
|
145 |
+
|
146 |
+
return result
|
147 |
except Exception as e:
|
148 |
+
logging.error(f"Face verification error: {str(e)}")
|
149 |
+
raise
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
|
151 |
+
def setup_routes(self):
|
152 |
+
@self.app.route('/')
|
153 |
+
def index():
|
154 |
+
return render_template('index.html')
|
155 |
|
156 |
+
@self.app.route('/verify', methods=['POST'])
|
157 |
+
@self.limiter.limit("10 per minute")
|
158 |
+
def verify_faces_endpoint():
|
159 |
+
try:
|
160 |
+
if 'image1' not in request.files or 'image2' not in request.files:
|
161 |
+
return jsonify({'error': 'Two images are required'}), 400
|
162 |
|
163 |
+
image1 = request.files['image1']
|
164 |
+
image2 = request.files['image2']
|
165 |
|
166 |
+
# Validation des images
|
167 |
+
try:
|
168 |
+
image1_stream = self.validate_image(image1)
|
169 |
+
image2_stream = self.validate_image(image2)
|
170 |
+
except ValueError as e:
|
171 |
+
return jsonify({'error': str(e)}), 400
|
172 |
|
173 |
+
# Création des fichiers temporaires
|
174 |
+
with tempfile.TemporaryDirectory() as temp_dir:
|
175 |
+
image1_path = os.path.join(temp_dir, secure_filename(image1.filename))
|
176 |
+
image2_path = os.path.join(temp_dir, secure_filename(image2.filename))
|
177 |
+
|
178 |
+
# Sauvegarde des images optimisées
|
179 |
+
with open(image1_path, 'wb') as f:
|
180 |
+
f.write(image1_stream.getvalue())
|
181 |
+
with open(image2_path, 'wb') as f:
|
182 |
+
f.write(image2_stream.getvalue())
|
183 |
+
|
184 |
+
# Analyse des visages
|
185 |
+
result = self.verify_faces(image1_path, image2_path)
|
186 |
+
|
187 |
+
# Sauvegarde permanente si nécessaire
|
188 |
+
if result['verified']:
|
189 |
+
permanent_dir = os.path.join(self.app.static_folder, 'verified_faces')
|
190 |
+
os.makedirs(permanent_dir, exist_ok=True)
|
191 |
+
|
192 |
+
# Génération de noms uniques
|
193 |
+
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
|
194 |
+
image1_name = f"face1_{timestamp}_{uuid.uuid4().hex[:8]}.jpg"
|
195 |
+
image2_name = f"face2_{timestamp}_{uuid.uuid4().hex[:8]}.jpg"
|
196 |
+
|
197 |
+
shutil.copy2(image1_path, os.path.join(permanent_dir, image1_name))
|
198 |
+
shutil.copy2(image2_path, os.path.join(permanent_dir, image2_name))
|
199 |
+
|
200 |
+
result['image1_url'] = f'/static/verified_faces/{image1_name}'
|
201 |
+
result['image2_url'] = f'/static/verified_faces/{image2_name}'
|
202 |
+
|
203 |
+
return jsonify(result)
|
204 |
+
|
205 |
+
except Exception as e:
|
206 |
+
logging.error(f"Verification endpoint error: {str(e)}")
|
207 |
+
return jsonify({'error': 'An internal error occurred'}), 500
|
208 |
+
|
209 |
+
@self.app.route('/analyze', methods=['POST'])
|
210 |
+
@self.limiter.limit("20 per minute")
|
211 |
+
def analyze_face_endpoint():
|
212 |
+
try:
|
213 |
+
if 'image' not in request.files:
|
214 |
+
return jsonify({'error': 'No image provided'}), 400
|
215 |
+
|
216 |
+
image = request.files['image']
|
217 |
+
|
218 |
+
# Validation de l'image
|
219 |
+
try:
|
220 |
+
image_stream = self.validate_image(image)
|
221 |
+
except ValueError as e:
|
222 |
+
return jsonify({'error': str(e)}), 400
|
223 |
+
|
224 |
+
# Traitement asynchrone
|
225 |
+
result_queue = queue.Queue()
|
226 |
+
|
227 |
+
def process_task():
|
228 |
+
try:
|
229 |
+
with tempfile.NamedTemporaryFile(suffix='.jpg', delete=False) as temp_file:
|
230 |
+
temp_file.write(image_stream.getvalue())
|
231 |
+
result = self.process_face_detection(temp_file.name)
|
232 |
+
result_queue.put(('success', result))
|
233 |
+
except Exception as e:
|
234 |
+
result_queue.put(('error', str(e)))
|
235 |
+
finally:
|
236 |
+
try:
|
237 |
+
os.unlink(temp_file.name)
|
238 |
+
except:
|
239 |
+
pass
|
240 |
+
|
241 |
+
self.task_queue.put(process_task)
|
242 |
+
|
243 |
+
# Attente du résultat avec timeout
|
244 |
+
try:
|
245 |
+
status, result = result_queue.get(timeout=30)
|
246 |
+
if status == 'error':
|
247 |
+
return jsonify({'error': result}), 500
|
248 |
+
return jsonify(result)
|
249 |
+
except queue.Empty:
|
250 |
+
return jsonify({'error': 'Processing timeout'}), 408
|
251 |
+
|
252 |
+
except Exception as e:
|
253 |
+
logging.error(f"Analysis endpoint error: {str(e)}")
|
254 |
+
return jsonify({'error': 'An internal error occurred'}), 500
|
255 |
+
|
256 |
+
@self.app.errorhandler(413)
|
257 |
+
def request_entity_too_large(error):
|
258 |
+
return jsonify({'error': 'File too large'}), 413
|
259 |
+
|
260 |
+
@self.app.errorhandler(429)
|
261 |
+
def ratelimit_handler(e):
|
262 |
+
return jsonify({'error': 'Rate limit exceeded'}), 429
|
263 |
+
|
264 |
+
def run(self, host='0.0.0.0', port=5000, debug=False):
|
265 |
+
self.setup_routes()
|
266 |
+
self.app.run(host=host, port=port, debug=debug)
|
267 |
|
268 |
if __name__ == '__main__':
|
269 |
+
app = FaceAnalysisApp()
|
|
|
270 |
app.run(debug=True)
|