import gradio as gr from transformers import MBartForConditionalGeneration, MBart50TokenizerFast # Load the mBART model and tokenizer for multilingual translation model_name = "facebook/mbart-large-50-many-to-many-mmt" model = MBartForConditionalGeneration.from_pretrained(model_name) tokenizer = MBart50TokenizerFast.from_pretrained(model_name, src_lang="en_XX", tgt_lang="th_TH") # Prediction function def translate_text(input_text): inputs = tokenizer.encode(input_text, return_tensors="pt") outputs = model.generate( inputs, max_new_tokens=40, do_sample=True, top_k=30, top_p=0.95 ) translated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) return translated_text # Gradio interface interface = gr.Interface( fn=translate_text, inputs="text", outputs="text", title="Language Translation", description="Translate text using the my_awesome_opus_books_model." ) # Launch the Gradio app interface.launch()