File size: 5,494 Bytes
38d6ba2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import gradio as gr
import pandas as pd

# Define the columns for the UGI Leaderboard
UGI_COLS = [
    '#P', 'Model', 'UGI 🏆', 'Willingness👍', 'QuActivities', 'Internet', 'CrimeStats', 'Stories/Jokes', 'Pol Contro'
]

# Load the leaderboard data from a CSV file
def load_leaderboard_data(csv_file_path):
    try:
        df = pd.read_csv(csv_file_path)
        # Create hyperlinks in the Model column using HTML <a> tags with inline CSS for styling
        df['Model'] = df.apply(lambda row: f'<a href="{row["Link"]}" target="_blank" style="color: blue; text-decoration: none;">{row["Model"]}</a>' if pd.notna(row["Link"]) else row["Model"], axis=1)
        # Drop the 'Link' column as it's no longer needed
        df.drop(columns=['Link'], inplace=True)
        return df
    except Exception as e:
        print(f"Error loading CSV file: {e}")
        return pd.DataFrame(columns=UGI_COLS)  # Return an empty dataframe with the correct columns

# Update the leaderboard table based on the search query and parameter range filters
def update_table(df: pd.DataFrame, query: str, param_ranges: dict) -> pd.DataFrame:
    filtered_df = df
    if any(param_ranges.values()):
        conditions = []
        for param_range, checked in param_ranges.items():
            if checked:
                if param_range == '~1.5':
                    conditions.append((filtered_df['Params'] < 2.5))
                elif param_range == '~3':
                    conditions.append(((filtered_df['Params'] >= 2.5) & (filtered_df['Params'] < 6)))
                elif param_range == '~7':
                    conditions.append(((filtered_df['Params'] >= 6) & (filtered_df['Params'] < 9.5)))
                elif param_range == '~13':
                    conditions.append(((filtered_df['Params'] >= 9.5) & (filtered_df['Params'] < 16)))
                elif param_range == '~20':
                    conditions.append(((filtered_df['Params'] >= 16) & (filtered_df['Params'] < 28)))
                elif param_range == '~34':
                    conditions.append(((filtered_df['Params'] >= 28) & (filtered_df['Params'] < 40)))
                elif param_range == '~50':
                    conditions.append(((filtered_df['Params'] >= 40) & (filtered_df['Params'] < 60)))
                elif param_range == '~70+':
                    conditions.append((filtered_df['Params'] >= 60))
        
        if all(param_ranges.values()):
            conditions.append(filtered_df['Params'].isna())
        
        filtered_df = filtered_df[pd.concat(conditions, axis=1).any(axis=1)]
    
    if query:
        filtered_df = filtered_df[filtered_df.apply(lambda row: query.lower() in row.to_string().lower(), axis=1)]
    
    return filtered_df[UGI_COLS]  # Return only the columns defined in UGI_COLS

# Define the Gradio interface
demo = gr.Blocks()

with demo:
    gr.Markdown("## UGI Leaderboard", elem_classes="text-lg")
    with gr.Column():
        with gr.Row():
            search_bar = gr.Textbox(placeholder=" 🔍 Search for a model...", show_label=False)
        with gr.Row():
            gr.Markdown("Model sizes (in billions of parameters)", elem_classes="text-sm")
            param_range_1 = gr.Checkbox(label="~1.5", value=False)
            param_range_2 = gr.Checkbox(label="~3", value=False)
            param_range_3 = gr.Checkbox(label="~7", value=False)
            param_range_4 = gr.Checkbox(label="~13", value=False)
            param_range_5 = gr.Checkbox(label="~20", value=False)
            param_range_6 = gr.Checkbox(label="~34", value=False)
            param_range_7 = gr.Checkbox(label="~50", value=False)
            param_range_8 = gr.Checkbox(label="~70+", value=False)
    
    # Load the initial leaderboard data
    leaderboard_df = load_leaderboard_data("ugi-leaderboard-data.csv")
    
    # Define the datatypes for each column, setting 'Model' column to 'html'
    datatypes = ['html' if col == 'Model' else 'str' for col in UGI_COLS]
    
    leaderboard_table = gr.Dataframe(
        value=leaderboard_df[UGI_COLS],
        datatype=datatypes,  # Specify the datatype for each column
        interactive=False,  # Set to False to make the leaderboard non-editable
        visible=True,
        elem_classes="text-sm"  # Increase the font size of the leaderboard data
    )

    # Define the search and filter functionality
    inputs = [
        search_bar,
        param_range_1,
        param_range_2,
        param_range_3,
        param_range_4,
        param_range_5,
        param_range_6,
        param_range_7,
        param_range_8
    ]
    
    outputs = leaderboard_table
    
    search_bar.change(
        fn=lambda query, r1, r2, r3, r4, r5, r6, r7, r8: update_table(leaderboard_df, query, {
            '~1.5': r1,
            '~3': r2,
            '~7': r3,
            '~13': r4,
            '~20': r5,
            '~34': r6,
            '~50': r7,
            '~70+': r8
        }),
        inputs=inputs,
        outputs=outputs
    )
    
    for param_range in inputs[1:]:
        param_range.change(
            fn=lambda query, r1, r2, r3, r4, r5, r6, r7, r8: update_table(leaderboard_df, query, {
                '~1.5': r1,
                '~3': r2,
                '~7': r3,
                '~13': r4,
                '~20': r5,
                '~34': r6,
                '~50': r7,
                '~70+': r8
            }),
            inputs=inputs,
            outputs=outputs
        )

# Launch the Gradio app
demo.launch()