DontPlanToEnd
commited on
Commit
β’
5d0a24d
1
Parent(s):
204dcb4
Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,7 @@ import pandas as pd
|
|
3 |
import numpy as np
|
4 |
from functools import partial
|
5 |
from gradio_rangeslider import RangeSlider
|
|
|
6 |
|
7 |
custom_css = """
|
8 |
.tab-nav button {
|
@@ -42,12 +43,32 @@ custom_css = """
|
|
42 |
UGI_COLS = ['#P', 'Model', 'UGI π', 'W/10 π', 'Unruly', 'Internet', 'Stats', 'Writing', 'PolContro']
|
43 |
WRITING_STYLE_COLS = ['#P', 'Model', 'Reg+MyScore π', 'Reg+Int π', 'MyScore π', 'ASSSβ¬οΈ', 'SMOGβ¬οΈ', 'Yuleβ¬οΈ']
|
44 |
ANIME_RATING_COLS = ['#P', 'Model', 'Score π', 'Dif', 'Cor', 'Std']
|
|
|
45 |
|
46 |
# Load the leaderboard data from a CSV file
|
47 |
def load_leaderboard_data(csv_file_path):
|
48 |
try:
|
49 |
df = pd.read_csv(csv_file_path)
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
df.drop(columns=['Link'], inplace=True)
|
52 |
|
53 |
# Round numeric columns to 3 decimal places
|
@@ -61,30 +82,30 @@ def load_leaderboard_data(csv_file_path):
|
|
61 |
return df
|
62 |
except Exception as e:
|
63 |
print(f"Error loading CSV file: {e}")
|
64 |
-
return pd.DataFrame(columns=UGI_COLS + WRITING_STYLE_COLS + ANIME_RATING_COLS)
|
65 |
|
66 |
# Update the leaderboard table based on the search query and parameter range filters
|
67 |
-
def update_table(df: pd.DataFrame, query: str, param_ranges: list, columns: list, w10_range: tuple) -> pd.DataFrame:
|
68 |
filtered_df = df.copy()
|
69 |
if param_ranges:
|
70 |
param_mask = pd.Series(False, index=filtered_df.index)
|
71 |
for param_range in param_ranges:
|
72 |
if param_range == '~2':
|
73 |
-
param_mask |= (filtered_df['Params'] < 2.5)
|
74 |
elif param_range == '~4':
|
75 |
-
param_mask |= ((filtered_df['Params'] >= 2.5) & (filtered_df['Params'] < 6))
|
76 |
elif param_range == '~8':
|
77 |
-
param_mask |= ((filtered_df['Params'] >= 6) & (filtered_df['Params'] < 9.5))
|
78 |
elif param_range == '~13':
|
79 |
-
param_mask |= ((filtered_df['Params'] >= 9.5) & (filtered_df['Params'] < 16))
|
80 |
elif param_range == '~20':
|
81 |
-
param_mask |= ((filtered_df['Params'] >= 16) & (filtered_df['Params'] < 28))
|
82 |
elif param_range == '~34':
|
83 |
-
param_mask |= ((filtered_df['Params'] >= 28) & (filtered_df['Params'] < 40))
|
84 |
elif param_range == '~50':
|
85 |
-
param_mask |= ((filtered_df['Params'] >= 40) & (filtered_df['Params'] < 65))
|
86 |
elif param_range == '~70+':
|
87 |
-
param_mask |= (filtered_df['Params'] >= 65)
|
88 |
filtered_df = filtered_df[param_mask]
|
89 |
|
90 |
if query:
|
@@ -94,6 +115,17 @@ def update_table(df: pd.DataFrame, query: str, param_ranges: list, columns: list
|
|
94 |
if 'W/10 π' in filtered_df.columns:
|
95 |
filtered_df = filtered_df[(filtered_df['W/10 π'] >= w10_range[0]) & (filtered_df['W/10 π'] <= w10_range[1])]
|
96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
return filtered_df[columns]
|
98 |
|
99 |
# Define the Gradio interface
|
@@ -129,13 +161,21 @@ with GraInter:
|
|
129 |
)
|
130 |
with gr.Column(scale=2):
|
131 |
w10_range = RangeSlider(minimum=0, maximum=10, value=(0, 10), step=0.1, label="W/10 Range")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
|
133 |
# Load the initial leaderboard data
|
134 |
leaderboard_df = load_leaderboard_data("ugi-leaderboard-data.csv")
|
135 |
|
136 |
with gr.Tabs():
|
137 |
with gr.TabItem("UGI-Leaderboard"):
|
138 |
-
datatypes_ugi = ['html' if col == 'Model' else 'str' for col in UGI_COLS]
|
139 |
leaderboard_table_ugi = gr.Dataframe(
|
140 |
value=leaderboard_df[UGI_COLS],
|
141 |
datatype=datatypes_ugi,
|
@@ -170,7 +210,7 @@ with GraInter:
|
|
170 |
|
171 |
with gr.TabItem("Writing Style"):
|
172 |
leaderboard_df_ws = leaderboard_df.sort_values(by='Reg+MyScore π', ascending=False)
|
173 |
-
datatypes_ws = ['html' if col == 'Model' else 'str' for col in WRITING_STYLE_COLS]
|
174 |
leaderboard_table_ws = gr.Dataframe(
|
175 |
value=leaderboard_df_ws[WRITING_STYLE_COLS],
|
176 |
datatype=datatypes_ws,
|
@@ -210,7 +250,7 @@ with GraInter:
|
|
210 |
leaderboard_df_arp_na = leaderboard_df_arp[leaderboard_df_arp[['Dif', 'Cor']].isna().any(axis=1)]
|
211 |
leaderboard_df_arp = leaderboard_df_arp[~leaderboard_df_arp[['Dif', 'Cor']].isna().any(axis=1)]
|
212 |
|
213 |
-
datatypes_arp = ['html' if col == 'Model' else 'str' for col in ANIME_RATING_COLS]
|
214 |
|
215 |
leaderboard_table_arp = gr.Dataframe(
|
216 |
value=leaderboard_df_arp[ANIME_RATING_COLS],
|
@@ -248,36 +288,42 @@ with GraInter:
|
|
248 |
**NA:** When models either reply with one number for every anime, give ratings not between 1 and 10, or don't give every anime in the list a rating.
|
249 |
""")
|
250 |
|
251 |
-
def update_all_tables(query, param_ranges, w10_range):
|
252 |
-
ugi_table = update_table(leaderboard_df, query, param_ranges, UGI_COLS, w10_range)
|
253 |
|
254 |
ws_df = leaderboard_df.sort_values(by='Reg+MyScore π', ascending=False)
|
255 |
-
ws_table = update_table(ws_df, query, param_ranges, WRITING_STYLE_COLS, w10_range)
|
256 |
|
257 |
arp_df = leaderboard_df.sort_values(by='Score π', ascending=False)
|
258 |
arp_df_na = arp_df[arp_df[['Dif', 'Cor']].isna().any(axis=1)]
|
259 |
arp_df = arp_df[~arp_df[['Dif', 'Cor']].isna().any(axis=1)]
|
260 |
|
261 |
-
arp_table = update_table(arp_df, query, param_ranges, ANIME_RATING_COLS, w10_range)
|
262 |
-
arp_na_table = update_table(arp_df_na, query, param_ranges, ANIME_RATING_COLS, w10_range).fillna('NA')
|
263 |
|
264 |
return ugi_table, ws_table, arp_table, arp_na_table
|
265 |
|
266 |
search_bar.change(
|
267 |
fn=update_all_tables,
|
268 |
-
inputs=[search_bar, filter_columns_size, w10_range],
|
269 |
outputs=[leaderboard_table_ugi, leaderboard_table_ws, leaderboard_table_arp, leaderboard_table_arp_na]
|
270 |
)
|
271 |
|
272 |
filter_columns_size.change(
|
273 |
fn=update_all_tables,
|
274 |
-
inputs=[search_bar, filter_columns_size, w10_range],
|
275 |
outputs=[leaderboard_table_ugi, leaderboard_table_ws, leaderboard_table_arp, leaderboard_table_arp_na]
|
276 |
)
|
277 |
|
278 |
w10_range.change(
|
279 |
fn=update_all_tables,
|
280 |
-
inputs=[search_bar, filter_columns_size, w10_range],
|
|
|
|
|
|
|
|
|
|
|
|
|
281 |
outputs=[leaderboard_table_ugi, leaderboard_table_ws, leaderboard_table_arp, leaderboard_table_arp_na]
|
282 |
)
|
283 |
|
|
|
3 |
import numpy as np
|
4 |
from functools import partial
|
5 |
from gradio_rangeslider import RangeSlider
|
6 |
+
from datetime import datetime, timedelta
|
7 |
|
8 |
custom_css = """
|
9 |
.tab-nav button {
|
|
|
43 |
UGI_COLS = ['#P', 'Model', 'UGI π', 'W/10 π', 'Unruly', 'Internet', 'Stats', 'Writing', 'PolContro']
|
44 |
WRITING_STYLE_COLS = ['#P', 'Model', 'Reg+MyScore π', 'Reg+Int π', 'MyScore π', 'ASSSβ¬οΈ', 'SMOGβ¬οΈ', 'Yuleβ¬οΈ']
|
45 |
ANIME_RATING_COLS = ['#P', 'Model', 'Score π', 'Dif', 'Cor', 'Std']
|
46 |
+
ADDITIONAL_COLS = ['Release Date', 'Date Added', 'Active Params', 'Total Params']
|
47 |
|
48 |
# Load the leaderboard data from a CSV file
|
49 |
def load_leaderboard_data(csv_file_path):
|
50 |
try:
|
51 |
df = pd.read_csv(csv_file_path)
|
52 |
+
|
53 |
+
# Convert date columns to datetime
|
54 |
+
for col in ['Release Date', 'Date Added']:
|
55 |
+
df[col] = pd.to_datetime(df[col], errors='coerce')
|
56 |
+
|
57 |
+
# Calculate the date two weeks ago from today
|
58 |
+
two_weeks_ago = datetime.now() - timedelta(days=9)
|
59 |
+
|
60 |
+
# Add π to the model name if Date Added is within the last two weeks
|
61 |
+
df['Model'] = df.apply(
|
62 |
+
lambda row: f'π {row["Model"]}' if pd.notna(row["Date Added"]) and row["Date Added"] >= two_weeks_ago else row["Model"],
|
63 |
+
axis=1
|
64 |
+
)
|
65 |
+
|
66 |
+
# Add hyperlink to the model name
|
67 |
+
df['Model'] = df.apply(
|
68 |
+
lambda row: f'<a href="{row["Link"]}" target="_blank" style="color: blue; text-decoration: none;">{row["Model"]}</a>' if pd.notna(row["Link"]) else row["Model"],
|
69 |
+
axis=1
|
70 |
+
)
|
71 |
+
|
72 |
df.drop(columns=['Link'], inplace=True)
|
73 |
|
74 |
# Round numeric columns to 3 decimal places
|
|
|
82 |
return df
|
83 |
except Exception as e:
|
84 |
print(f"Error loading CSV file: {e}")
|
85 |
+
return pd.DataFrame(columns=UGI_COLS + WRITING_STYLE_COLS + ANIME_RATING_COLS + ADDITIONAL_COLS)
|
86 |
|
87 |
# Update the leaderboard table based on the search query and parameter range filters
|
88 |
+
def update_table(df: pd.DataFrame, query: str, param_ranges: list, columns: list, w10_range: tuple, additional_cols: list) -> pd.DataFrame:
|
89 |
filtered_df = df.copy()
|
90 |
if param_ranges:
|
91 |
param_mask = pd.Series(False, index=filtered_df.index)
|
92 |
for param_range in param_ranges:
|
93 |
if param_range == '~2':
|
94 |
+
param_mask |= (filtered_df['Total Params'] < 2.5)
|
95 |
elif param_range == '~4':
|
96 |
+
param_mask |= ((filtered_df['Total Params'] >= 2.5) & (filtered_df['Total Params'] < 6))
|
97 |
elif param_range == '~8':
|
98 |
+
param_mask |= ((filtered_df['Total Params'] >= 6) & (filtered_df['Total Params'] < 9.5))
|
99 |
elif param_range == '~13':
|
100 |
+
param_mask |= ((filtered_df['Total Params'] >= 9.5) & (filtered_df['Total Params'] < 16))
|
101 |
elif param_range == '~20':
|
102 |
+
param_mask |= ((filtered_df['Total Params'] >= 16) & (filtered_df['Total Params'] < 28))
|
103 |
elif param_range == '~34':
|
104 |
+
param_mask |= ((filtered_df['Total Params'] >= 28) & (filtered_df['Total Params'] < 40))
|
105 |
elif param_range == '~50':
|
106 |
+
param_mask |= ((filtered_df['Total Params'] >= 40) & (filtered_df['Total Params'] < 65))
|
107 |
elif param_range == '~70+':
|
108 |
+
param_mask |= (filtered_df['Total Params'] >= 65)
|
109 |
filtered_df = filtered_df[param_mask]
|
110 |
|
111 |
if query:
|
|
|
115 |
if 'W/10 π' in filtered_df.columns:
|
116 |
filtered_df = filtered_df[(filtered_df['W/10 π'] >= w10_range[0]) & (filtered_df['W/10 π'] <= w10_range[1])]
|
117 |
|
118 |
+
# Add selected additional columns
|
119 |
+
columns = columns + [col for col in additional_cols if col in ADDITIONAL_COLS]
|
120 |
+
|
121 |
+
# Ensure date columns are sorted as dates and then formatted as strings
|
122 |
+
if 'Release Date' in columns:
|
123 |
+
filtered_df['Release Date'] = pd.to_datetime(filtered_df['Release Date'], errors='coerce')
|
124 |
+
filtered_df['Release Date'] = filtered_df['Release Date'].dt.strftime('%Y-%m-%d')
|
125 |
+
if 'Date Added' in columns:
|
126 |
+
filtered_df['Date Added'] = pd.to_datetime(filtered_df['Date Added'], errors='coerce')
|
127 |
+
filtered_df['Date Added'] = filtered_df['Date Added'].dt.strftime('%Y-%m-%d')
|
128 |
+
|
129 |
return filtered_df[columns]
|
130 |
|
131 |
# Define the Gradio interface
|
|
|
161 |
)
|
162 |
with gr.Column(scale=2):
|
163 |
w10_range = RangeSlider(minimum=0, maximum=10, value=(0, 10), step=0.1, label="W/10 Range")
|
164 |
+
with gr.Row():
|
165 |
+
additional_columns = gr.CheckboxGroup(
|
166 |
+
label="Additional Columns",
|
167 |
+
choices=ADDITIONAL_COLS,
|
168 |
+
value=[],
|
169 |
+
interactive=True,
|
170 |
+
elem_id="additional-columns",
|
171 |
+
)
|
172 |
|
173 |
# Load the initial leaderboard data
|
174 |
leaderboard_df = load_leaderboard_data("ugi-leaderboard-data.csv")
|
175 |
|
176 |
with gr.Tabs():
|
177 |
with gr.TabItem("UGI-Leaderboard"):
|
178 |
+
datatypes_ugi = ['html' if col == 'Model' else 'str' for col in UGI_COLS + ADDITIONAL_COLS]
|
179 |
leaderboard_table_ugi = gr.Dataframe(
|
180 |
value=leaderboard_df[UGI_COLS],
|
181 |
datatype=datatypes_ugi,
|
|
|
210 |
|
211 |
with gr.TabItem("Writing Style"):
|
212 |
leaderboard_df_ws = leaderboard_df.sort_values(by='Reg+MyScore π', ascending=False)
|
213 |
+
datatypes_ws = ['html' if col == 'Model' else 'str' for col in WRITING_STYLE_COLS + ADDITIONAL_COLS]
|
214 |
leaderboard_table_ws = gr.Dataframe(
|
215 |
value=leaderboard_df_ws[WRITING_STYLE_COLS],
|
216 |
datatype=datatypes_ws,
|
|
|
250 |
leaderboard_df_arp_na = leaderboard_df_arp[leaderboard_df_arp[['Dif', 'Cor']].isna().any(axis=1)]
|
251 |
leaderboard_df_arp = leaderboard_df_arp[~leaderboard_df_arp[['Dif', 'Cor']].isna().any(axis=1)]
|
252 |
|
253 |
+
datatypes_arp = ['html' if col == 'Model' else 'str' for col in ANIME_RATING_COLS + ADDITIONAL_COLS]
|
254 |
|
255 |
leaderboard_table_arp = gr.Dataframe(
|
256 |
value=leaderboard_df_arp[ANIME_RATING_COLS],
|
|
|
288 |
**NA:** When models either reply with one number for every anime, give ratings not between 1 and 10, or don't give every anime in the list a rating.
|
289 |
""")
|
290 |
|
291 |
+
def update_all_tables(query, param_ranges, w10_range, additional_cols):
|
292 |
+
ugi_table = update_table(leaderboard_df, query, param_ranges, UGI_COLS, w10_range, additional_cols)
|
293 |
|
294 |
ws_df = leaderboard_df.sort_values(by='Reg+MyScore π', ascending=False)
|
295 |
+
ws_table = update_table(ws_df, query, param_ranges, WRITING_STYLE_COLS, w10_range, additional_cols)
|
296 |
|
297 |
arp_df = leaderboard_df.sort_values(by='Score π', ascending=False)
|
298 |
arp_df_na = arp_df[arp_df[['Dif', 'Cor']].isna().any(axis=1)]
|
299 |
arp_df = arp_df[~arp_df[['Dif', 'Cor']].isna().any(axis=1)]
|
300 |
|
301 |
+
arp_table = update_table(arp_df, query, param_ranges, ANIME_RATING_COLS, w10_range, additional_cols)
|
302 |
+
arp_na_table = update_table(arp_df_na, query, param_ranges, ANIME_RATING_COLS, w10_range, additional_cols).fillna('NA')
|
303 |
|
304 |
return ugi_table, ws_table, arp_table, arp_na_table
|
305 |
|
306 |
search_bar.change(
|
307 |
fn=update_all_tables,
|
308 |
+
inputs=[search_bar, filter_columns_size, w10_range, additional_columns],
|
309 |
outputs=[leaderboard_table_ugi, leaderboard_table_ws, leaderboard_table_arp, leaderboard_table_arp_na]
|
310 |
)
|
311 |
|
312 |
filter_columns_size.change(
|
313 |
fn=update_all_tables,
|
314 |
+
inputs=[search_bar, filter_columns_size, w10_range, additional_columns],
|
315 |
outputs=[leaderboard_table_ugi, leaderboard_table_ws, leaderboard_table_arp, leaderboard_table_arp_na]
|
316 |
)
|
317 |
|
318 |
w10_range.change(
|
319 |
fn=update_all_tables,
|
320 |
+
inputs=[search_bar, filter_columns_size, w10_range, additional_columns],
|
321 |
+
outputs=[leaderboard_table_ugi, leaderboard_table_ws, leaderboard_table_arp, leaderboard_table_arp_na]
|
322 |
+
)
|
323 |
+
|
324 |
+
additional_columns.change(
|
325 |
+
fn=update_all_tables,
|
326 |
+
inputs=[search_bar, filter_columns_size, w10_range, additional_columns],
|
327 |
outputs=[leaderboard_table_ugi, leaderboard_table_ws, leaderboard_table_arp, leaderboard_table_arp_na]
|
328 |
)
|
329 |
|