File size: 13,069 Bytes
760bde3
ed7763f
760bde3
434a891
 
ed7763f
 
40c7708
 
ed7763f
 
 
760bde3
5c0bd4c
fd01170
6061d17
fd01170
4ba09fa
 
 
 
 
 
 
 
 
 
6061d17
 
 
 
 
4ba09fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
434a891
4ba09fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c419c35
4ba09fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca589ef
4ba09fa
 
 
 
 
 
 
 
57ec633
 
c419c35
 
 
 
 
 
 
 
 
57ec633
c419c35
 
 
4ba09fa
 
 
 
 
 
 
 
ed7763f
 
4ba09fa
ed7763f
4ba09fa
 
ed7763f
 
 
 
 
 
 
 
4ba09fa
ed7763f
4ba09fa
 
 
 
2e4e1c8
4ba09fa
c419c35
4ba09fa
 
 
 
 
 
 
 
c419c35
4ba09fa
c419c35
4ba09fa
 
 
 
 
 
 
 
2e4e1c8
4ba09fa
 
 
 
 
 
 
ed7763f
4ba09fa
 
ed7763f
4ba09fa
2e4e1c8
4ba09fa
 
 
 
 
 
 
 
 
 
ed7763f
4ba09fa
 
ed7763f
4ba09fa
 
 
 
 
 
 
 
c419c35
ed7763f
4ba09fa
 
ed7763f
4ba09fa
 
 
 
ca589ef
 
 
 
 
 
4ba09fa
 
 
 
 
 
 
 
 
 
 
 
 
 
ca589ef
2e4e1c8
 
81fed1b
4ba09fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81fed1b
4ba09fa
e5f7fa3
 
 
 
4ba09fa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349

import subprocess, os, sys, time

os.environ["CUDA_VISIBLE_DEVICES"] = "0"

result = subprocess.run(['pip', 'install', '-e', 'GroundingDINO'], check=True)
print(f'pip install GroundingDINO = {result}')

result = subprocess.run(['pip', 'list'], check=True)
print(f'pip list = {result}')

sys.path.insert(0, './GroundingDINO')

if not os.path.exists('./sam_vit_h_4b8939.pth'):
    result = subprocess.run(['wget', 'https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth'], check=True)
    print(f'wget sam_vit_h_4b8939.pth result = {result}')    

import gradio as gr

import argparse
import copy

import numpy as np
import torch
from PIL import Image, ImageDraw, ImageFont

# Grounding DINO
import GroundingDINO.groundingdino.datasets.transforms as T
from GroundingDINO.groundingdino.models import build_model
from GroundingDINO.groundingdino.util import box_ops
from GroundingDINO.groundingdino.util.slconfig import SLConfig
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap

# segment anything
from segment_anything import build_sam, SamPredictor 
import cv2
import numpy as np
import matplotlib.pyplot as plt


# diffusers
import PIL
import requests
import torch
from io import BytesIO
from diffusers import StableDiffusionInpaintPipeline
from huggingface_hub import hf_hub_download

def get_device():
    from numba import cuda
    if cuda.is_available():
        device = 'cuda:0' # cuda.get_current_device()
    else:
        device = 'cpu'
    return device

def load_model_hf(model_config_path, repo_id, filename, device='cpu'):
    args = SLConfig.fromfile(model_config_path) 
    model = build_model(args)
    args.device = device

    cache_file = hf_hub_download(repo_id=repo_id, filename=filename)
    checkpoint = torch.load(cache_file, map_location='cpu')
    log = model.load_state_dict(clean_state_dict(checkpoint['model']), strict=False)
    print("Model loaded from {} \n => {}".format(cache_file, log))
    _ = model.eval()
    return model    

def plot_boxes_to_image(image_pil, tgt):
    H, W = tgt["size"]
    boxes = tgt["boxes"]
    labels = tgt["labels"]
    assert len(boxes) == len(labels), "boxes and labels must have same length"

    draw = ImageDraw.Draw(image_pil)
    mask = Image.new("L", image_pil.size, 0)
    mask_draw = ImageDraw.Draw(mask)

    # draw boxes and masks
    for box, label in zip(boxes, labels):
        # from 0..1 to 0..W, 0..H
        box = box * torch.Tensor([W, H, W, H])
        # from xywh to xyxy
        box[:2] -= box[2:] / 2
        box[2:] += box[:2]
        # random color
        color = tuple(np.random.randint(0, 255, size=3).tolist())
        # draw
        x0, y0, x1, y1 = box
        x0, y0, x1, y1 = int(x0), int(y0), int(x1), int(y1)

        draw.rectangle([x0, y0, x1, y1], outline=color, width=6)
        # draw.text((x0, y0), str(label), fill=color)

        font = ImageFont.load_default()
        if hasattr(font, "getbbox"):
            bbox = draw.textbbox((x0, y0), str(label), font)
        else:
            w, h = draw.textsize(str(label), font)
            bbox = (x0, y0, w + x0, y0 + h)
        # bbox = draw.textbbox((x0, y0), str(label))
        draw.rectangle(bbox, fill=color)
        draw.text((x0, y0), str(label), fill="white")

        mask_draw.rectangle([x0, y0, x1, y1], fill=255, width=6)

    return image_pil, mask

def load_image(image_path):
    # # load image
    # image_pil = Image.open(image_path).convert("RGB")  # load image
    image_pil = image_path

    transform = T.Compose(
        [
            T.RandomResize([800], max_size=1333),
            T.ToTensor(),
            T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
        ]
    )
    image, _ = transform(image_pil, None)  # 3, h, w
    return image_pil, image

def load_model(model_config_path, model_checkpoint_path, device):
    args = SLConfig.fromfile(model_config_path)
    args.device = device
    model = build_model(args)
    checkpoint = torch.load(model_checkpoint_path, map_location=device) #"cpu")
    load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
    print(load_res)
    _ = model.eval()
    return model

def get_grounding_output(model, image, caption, box_threshold, text_threshold, with_logits=True, device="cpu"):
    caption = caption.lower()
    caption = caption.strip()
    if not caption.endswith("."):
        caption = caption + "."
    model = model.to(device)
    image = image.to(device)
    with torch.no_grad():
        outputs = model(image[None], captions=[caption])
    logits = outputs["pred_logits"].cpu().sigmoid()[0]  # (nq, 256)
    boxes = outputs["pred_boxes"].cpu()[0]  # (nq, 4)
    logits.shape[0]

    # filter output
    logits_filt = logits.clone()
    boxes_filt = boxes.clone()
    filt_mask = logits_filt.max(dim=1)[0] > box_threshold
    logits_filt = logits_filt[filt_mask]  # num_filt, 256
    boxes_filt = boxes_filt[filt_mask]  # num_filt, 4
    logits_filt.shape[0]

    # get phrase
    tokenlizer = model.tokenizer
    tokenized = tokenlizer(caption)
    # build pred
    pred_phrases = []
    for logit, box in zip(logits_filt, boxes_filt):
        pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer)
        if with_logits:
            pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
        else:
            pred_phrases.append(pred_phrase)

    return boxes_filt, pred_phrases

def show_mask(mask, ax, random_color=False):
    if random_color:
        color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
    else:
        color = np.array([30/255, 144/255, 255/255, 0.6])
    h, w = mask.shape[-2:]
    mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
    ax.imshow(mask_image)

def show_box(box, ax, label):
    x0, y0 = box[0], box[1]
    w, h = box[2] - box[0], box[3] - box[1]
    ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2)) 
    ax.text(x0, y0, label)

config_file = 'GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py'
ckpt_repo_id = "ShilongLiu/GroundingDINO"
ckpt_filenmae = "groundingdino_swint_ogc.pth"
sam_checkpoint = './sam_vit_h_4b8939.pth' 
output_dir = "outputs"
device = "cuda"

device = get_device()

print(f'device={device}')

# initialize groundingdino model
groundingdino_model = load_model_hf(config_file, ckpt_repo_id, ckpt_filenmae)

# initialize SAM
sam_predictor = SamPredictor(build_sam(checkpoint=sam_checkpoint))

# initialize stable-diffusion-inpainting
sd_pipe = StableDiffusionInpaintPipeline.from_pretrained(
        "runwayml/stable-diffusion-inpainting", 
        torch_dtype=torch.float16
)
sd_pipe = sd_pipe.to(device)

def run_grounded_sam(image_path, text_prompt, task_type, inpaint_prompt, box_threshold, text_threshold):
    assert text_prompt, 'text_prompt is not found!'

    # make dir
    os.makedirs(output_dir, exist_ok=True)
    # load image
    image_pil, image = load_image(image_path.convert("RGB"))

    file_temp = int(time.time())

    # visualize raw image
    # image_pil.save(os.path.join(output_dir, f"raw_image_{file_temp}.jpg"))

    # run grounding dino model
    groundingdino_device = 'cpu'
    if device != 'cpu':
        try:
            from groundingdino import _C
            groundingdino_device = 'cuda:0'
        except:
            warnings.warn("Failed to load custom C++ ops. Running on CPU mode Only in groundingdino!")

    boxes_filt, pred_phrases = get_grounding_output(
        groundingdino_model, image, text_prompt, box_threshold, text_threshold, device=groundingdino_device
    )

    size = image_pil.size

    if task_type == 'segment' or task_type == 'inpainting':
        image = np.array(image_path)
        sam_predictor.set_image(image)

        H, W = size[1], size[0]
        for i in range(boxes_filt.size(0)):
            boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
            boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
            boxes_filt[i][2:] += boxes_filt[i][:2]

        boxes_filt = boxes_filt.cpu()
        transformed_boxes = sam_predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2])

        masks, _, _ = sam_predictor.predict_torch(
            point_coords = None,
            point_labels = None,
            boxes = transformed_boxes,
            multimask_output = False,
        )

        # masks: [1, 1, 512, 512]

    if task_type == 'detection':
        pred_dict = {
            "boxes": boxes_filt,
            "size": [size[1], size[0]],  # H,W
            "labels": pred_phrases,
        }
        # import ipdb; ipdb.set_trace()
        image_with_box = plot_boxes_to_image(image_pil, pred_dict)[0]
        image_path = os.path.join(output_dir, f"grounding_dino_output_{file_temp}.jpg")
        image_with_box.save(image_path)
        image_result = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB)
        os.remove(image_path)
        return image_result
    elif task_type == 'segment':
        assert sam_checkpoint, 'sam_checkpoint is not found!'

        # draw output image
        plt.figure(figsize=(10, 10))
        plt.imshow(image)
        for mask in masks:
            show_mask(mask.cpu().numpy(), plt.gca(), random_color=True)
        for box, label in zip(boxes_filt, pred_phrases):
            show_box(box.numpy(), plt.gca(), label)
        plt.axis('off')
        image_path = os.path.join(output_dir, f"grounding_seg_output_{file_temp}.jpg")
        plt.savefig(image_path, bbox_inches="tight")
        image_result = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB)
        os.remove(image_path)
        return image_result
    elif task_type == 'inpainting':
        assert inpaint_prompt, 'inpaint_prompt is not found!'
        # inpainting pipeline
        mask = masks[0][0].cpu().numpy() # simply choose the first mask, which will be refine in the future release
        mask_pil = Image.fromarray(mask)
        image_pil = Image.fromarray(image)

        image = sd_pipe(prompt=inpaint_prompt, image=image_pil, mask_image=mask_pil).images[0]
        image_path = os.path.join(output_dir, f"grounded_sam_inpainting_output_{file_temp}.jpg")
        image.save(image_path)
        image_result = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB)
        os.remove(image_path)
        return image_result
    else:
        print("task_type:{} error!".format(task_type))

def change_task_type(task_type):
    if task_type == "inpainting":
        return gr.Textbox.update(visible=True)
    else:
        return gr.Textbox.update(visible=False)

if __name__ == "__main__":

    parser = argparse.ArgumentParser("Grounded SAM demo", add_help=True)
    parser.add_argument("--debug", action="store_true", help="using debug mode")
    parser.add_argument("--share", action="store_true", help="share the app")
    args = parser.parse_args()

    print(f'args = {args}')

    block = gr.Blocks().queue()
    with block:
        with gr.Row():
            with gr.Column():
                input_image = gr.Image(source='upload', type="pil")
                task_type = gr.Radio(["detection", "segment", "inpainting"],  value="detection", 
                                                label='Task type',interactive=True, visible=True) 
                text_prompt = gr.Textbox(label="Detection Prompt", placeholder="Cannot be empty")                                                
                inpaint_prompt = gr.Textbox(label="Inpaint Prompt", visible=True)
                run_button = gr.Button(label="Run")
                with gr.Accordion("Advanced options", open=False):
                    box_threshold = gr.Slider(
                        label="Box Threshold", minimum=0.0, maximum=1.0, value=0.3, step=0.001
                    )
                    text_threshold = gr.Slider(
                        label="Text Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001
                    )

            with gr.Column():
                gallery = gr.outputs.Image(
                    type="pil",
                ).style(full_width=True, full_height=True)

        run_button.click(fn=run_grounded_sam, inputs=[
                        input_image, text_prompt, task_type, inpaint_prompt, box_threshold, text_threshold], outputs=[gallery])
        # task_type.change(fn=change_task_type, inputs=[task_type], outputs=[inpaint_prompt])

        DESCRIPTION = '### This demo from [Grounded-Segment-Anything](https://github.com/IDEA-Research/Grounded-Segment-Anything). Thanks for their excellent work.'
        DESCRIPTION += f'<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. <a href="https://huggingface.co/spaces/yizhangliu/Grounded-Segment-Anything?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>'
        gr.Markdown(DESCRIPTION)

    block.launch(server_name='0.0.0.0', debug=args.debug, share=args.share)