Spaces:
Running
on
Zero
Running
on
Zero
import datetime | |
import argparse, importlib | |
from pytorch_lightning import seed_everything | |
import torch | |
import torch.distributed as dist | |
def setup_dist(local_rank): | |
if dist.is_initialized(): | |
return | |
torch.cuda.set_device(local_rank) | |
torch.distributed.init_process_group('nccl', init_method='env://') | |
def get_dist_info(): | |
if dist.is_available(): | |
initialized = dist.is_initialized() | |
else: | |
initialized = False | |
if initialized: | |
rank = dist.get_rank() | |
world_size = dist.get_world_size() | |
else: | |
rank = 0 | |
world_size = 1 | |
return rank, world_size | |
if __name__ == '__main__': | |
now = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S") | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--module", type=str, help="module name", default="inference") | |
parser.add_argument("--local_rank", type=int, nargs="?", help="for ddp", default=0) | |
args, unknown = parser.parse_known_args() | |
inference_api = importlib.import_module(args.module, package=None) | |
inference_parser = inference_api.get_parser() | |
inference_args, unknown = inference_parser.parse_known_args() | |
seed_everything(inference_args.seed) | |
setup_dist(args.local_rank) | |
torch.backends.cudnn.benchmark = True | |
rank, gpu_num = get_dist_info() | |
# inference_args.savedir = inference_args.savedir+str('_seed')+str(inference_args.seed) | |
print("@DynamiCrafter Inference [rank%d]: %s"%(rank, now)) | |
inference_api.run_inference(inference_args, gpu_num, rank) |