Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (2025) Bytedance Ltd. and/or its affiliates | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import argparse | |
import numpy as np | |
import os | |
import torch | |
from extern.video_depth_anything.video_depth import VideoDepthAnything | |
class VDADemo: | |
def __init__( | |
self, | |
pre_train_path: str, | |
encoder: str = "vitl", | |
device: str = "cuda:0", | |
): | |
model_configs = { | |
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]}, | |
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]}, | |
} | |
self.video_depth_anything = VideoDepthAnything(**model_configs[encoder]) | |
self.video_depth_anything.load_state_dict(torch.load(pre_train_path, map_location='cpu'), strict=True) | |
self.video_depth_anything = self.video_depth_anything.to(device).eval() | |
self.device = device | |
def infer( | |
self, | |
frames, | |
near, | |
far, | |
input_size = 518, | |
target_fps = -1, | |
): | |
if frames.max() < 2.: | |
frames = frames*255. | |
with torch.inference_mode(): | |
depths, fps = self.video_depth_anything.infer_video_depth(frames, target_fps, input_size, self.device) | |
depths = torch.from_numpy(depths).unsqueeze(1) # 49 576 1024 -> | |
depths[depths < 1e-5] = 1e-5 | |
depths = 10000. / depths | |
depths = depths.clip(near, far) | |
return depths | |