import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer # Load the model and tokenizer model_name = "cognitivecomputations/dolphin-2.9.3-mistral-nemo-12b" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) # Define the prediction function def predict(input_text): inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs) generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) return generated_text # Create the Gradio interface iface = gr.Interface( fn=predict, inputs=gr.inputs.Textbox(lines=2, placeholder="Enter your text here..."), outputs="text", title="Dolphin-2.9.3-Mistral-Nemo-12b Text Generation", description="Generate text using the Dolphin-2.9.3-Mistral-Nemo-12b model from Hugging Face." ) # Launch the interface iface.launch()