Spaces:
Runtime error
Runtime error
first
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +2 -0
- PTI/.gitignore +4 -0
- PTI/LICENSE +21 -0
- PTI/README.md +230 -0
- PTI/__init__.py +0 -0
- PTI/configs/__init__.py +0 -0
- PTI/configs/evaluation_config.py +1 -0
- PTI/configs/global_config.py +12 -0
- PTI/configs/hyperparameters.py +28 -0
- PTI/configs/paths_config.py +31 -0
- PTI/criteria/__init__.py +0 -0
- PTI/criteria/l2_loss.py +8 -0
- PTI/criteria/localitly_regulizer.py +65 -0
- PTI/dnnlib/__init__.py +9 -0
- PTI/dnnlib/util.py +477 -0
- PTI/docs/joker_original.jpg +3 -0
- PTI/docs/joker_rotation.jpg +3 -0
- PTI/docs/model_rec.jpg +3 -0
- PTI/docs/stern_rotation.jpg +3 -0
- PTI/docs/teaser.jpg +3 -0
- PTI/docs/tyron_edit.jpg +3 -0
- PTI/docs/tyron_original.jpg +3 -0
- PTI/editings/ganspace.py +21 -0
- PTI/editings/ganspace_pca/ffhq_pca.pt +0 -0
- PTI/editings/interfacegan_directions/age.pt +0 -0
- PTI/editings/interfacegan_directions/rotation.pt +0 -0
- PTI/editings/interfacegan_directions/smile.pt +0 -0
- PTI/editings/latent_editor.py +23 -0
- PTI/evaluation/experiment_setting_creator.py +43 -0
- PTI/evaluation/qualitative_edit_comparison.py +156 -0
- PTI/models/StyleCLIP/__init__.py +0 -0
- PTI/models/StyleCLIP/criteria/__init__.py +0 -0
- PTI/models/StyleCLIP/criteria/clip_loss.py +17 -0
- PTI/models/StyleCLIP/criteria/id_loss.py +39 -0
- PTI/models/StyleCLIP/global_directions/GUI.py +103 -0
- PTI/models/StyleCLIP/global_directions/GenerateImg.py +50 -0
- PTI/models/StyleCLIP/global_directions/GetCode.py +232 -0
- PTI/models/StyleCLIP/global_directions/GetGUIData.py +67 -0
- PTI/models/StyleCLIP/global_directions/Inference.py +106 -0
- PTI/models/StyleCLIP/global_directions/MapTS.py +394 -0
- PTI/models/StyleCLIP/global_directions/PlayInteractively.py +197 -0
- PTI/models/StyleCLIP/global_directions/SingleChannel.py +109 -0
- PTI/models/StyleCLIP/global_directions/__init__.py +0 -0
- PTI/models/StyleCLIP/global_directions/data/ffhq/w_plus.npy +3 -0
- PTI/models/StyleCLIP/global_directions/dnnlib/__init__.py +9 -0
- PTI/models/StyleCLIP/global_directions/dnnlib/tflib/__init__.py +20 -0
- PTI/models/StyleCLIP/global_directions/dnnlib/tflib/autosummary.py +193 -0
- PTI/models/StyleCLIP/global_directions/dnnlib/tflib/custom_ops.py +181 -0
- PTI/models/StyleCLIP/global_directions/dnnlib/tflib/network.py +781 -0
- PTI/models/StyleCLIP/global_directions/dnnlib/tflib/ops/__init__.py +9 -0
.gitattributes
CHANGED
@@ -1,3 +1,5 @@
|
|
1 |
*.gif filter=lfs diff=lfs merge=lfs -text
|
2 |
*.png filter=lfs diff=lfs merge=lfs -text
|
3 |
*.jpg filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
1 |
*.gif filter=lfs diff=lfs merge=lfs -text
|
2 |
*.png filter=lfs diff=lfs merge=lfs -text
|
3 |
*.jpg filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
5 |
+
. filter=lfs diff=lfs merge=lfs -text
|
PTI/.gitignore
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
checkpoints
|
2 |
+
__pycache__
|
3 |
+
embeddings
|
4 |
+
test
|
PTI/LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2021 Daniel Roich
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
PTI/README.md
ADDED
@@ -0,0 +1,230 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# PTI: Pivotal Tuning for Latent-based editing of Real Images (ACM TOG 2022)
|
2 |
+
|
3 |
+
<!-- > Recently, a surge of advanced facial editing techniques have been proposed
|
4 |
+
that leverage the generative power of a pre-trained StyleGAN. To successfully
|
5 |
+
edit an image this way, one must first project (or invert) the image into
|
6 |
+
the pre-trained generator’s domain. As it turns out, however, StyleGAN’s
|
7 |
+
latent space induces an inherent tradeoff between distortion and editability,
|
8 |
+
i.e. between maintaining the original appearance and convincingly altering
|
9 |
+
some of its attributes. Practically, this means it is still challenging to
|
10 |
+
apply ID-preserving facial latent-space editing to faces which are out of the
|
11 |
+
generator’s domain. In this paper, we present an approach to bridge this
|
12 |
+
gap. Our technique slightly alters the generator, so that an out-of-domain
|
13 |
+
image is faithfully mapped into an in-domain latent code. The key idea is
|
14 |
+
pivotal tuning — a brief training process that preserves the editing quality
|
15 |
+
of an in-domain latent region, while changing its portrayed identity and
|
16 |
+
appearance. In Pivotal Tuning Inversion (PTI), an initial inverted latent code
|
17 |
+
serves as a pivot, around which the generator is fined-tuned. At the same
|
18 |
+
time, a regularization term keeps nearby identities intact, to locally contain
|
19 |
+
the effect. This surgical training process ends up altering appearance features
|
20 |
+
that represent mostly identity, without affecting editing capabilities.
|
21 |
+
To supplement this, we further show that pivotal tuning can also adjust the
|
22 |
+
generator to accommodate a multitude of faces, while introducing negligible
|
23 |
+
distortion on the rest of the domain. We validate our technique through
|
24 |
+
inversion and editing metrics, and show preferable scores to state-of-the-art
|
25 |
+
methods. We further qualitatively demonstrate our technique by applying
|
26 |
+
advanced edits (such as pose, age, or expression) to numerous images of
|
27 |
+
well-known and recognizable identities. Finally, we demonstrate resilience
|
28 |
+
to harder cases, including heavy make-up, elaborate hairstyles and/or headwear,
|
29 |
+
which otherwise could not have been successfully inverted and edited
|
30 |
+
by state-of-the-art methods. -->
|
31 |
+
|
32 |
+
<a href="https://arxiv.org/abs/2106.05744"><img src="https://img.shields.io/badge/arXiv-2008.00951-b31b1b.svg"></a>
|
33 |
+
<a href="https://opensource.org/licenses/MIT"><img src="https://img.shields.io/badge/License-MIT-yellow.svg"></a>
|
34 |
+
Inference Notebook: <a href="https://colab.research.google.com/github/danielroich/PTI/blob/main/notebooks/inference_playground.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" height=20></a>
|
35 |
+
|
36 |
+
<p align="center">
|
37 |
+
<img src="docs/teaser.jpg"/>
|
38 |
+
<br>
|
39 |
+
Pivotal Tuning Inversion (PTI) enables employing off-the-shelf latent based
|
40 |
+
semantic editing techniques on real images using StyleGAN.
|
41 |
+
PTI excels in identity preserving edits, portrayed through recognizable figures —
|
42 |
+
Serena Williams and Robert Downey Jr. (top), and in handling faces which
|
43 |
+
are clearly out-of-domain, e.g., due to heavy makeup (bottom).
|
44 |
+
</br>
|
45 |
+
</p>
|
46 |
+
|
47 |
+
## Description
|
48 |
+
Official Implementation of our PTI paper + code for evaluation metrics. PTI introduces an optimization mechanizem for solving the StyleGAN inversion task.
|
49 |
+
Providing near-perfect reconstruction results while maintaining the high editing abilitis of the native StyleGAN latent space W. For more details, see <a href="https://arxiv.org/abs/2106.05744"><img src="https://img.shields.io/badge/arXiv-2008.00951-b31b1b.svg"></a>
|
50 |
+
|
51 |
+
## Recent Updates
|
52 |
+
**2021.07.01**: Fixed files download phase in the inference notebook. Which might caused the notebook not to run smoothly.
|
53 |
+
|
54 |
+
**2021.06.29**: Added support for CPU. In order to run PTI on CPU please change `device` parameter under `configs/global_config.py` to "cpu" instead of "cuda".
|
55 |
+
|
56 |
+
**2021.06.25** : Adding mohawk edit using StyleCLIP+PTI in inference notebook.
|
57 |
+
Updating documentation in inference notebook due to Google Drive rate limit reached.
|
58 |
+
Currently, Google Drive does not allow to download the pretrined models using Colab automatically. Manual intervention might be needed.
|
59 |
+
|
60 |
+
## Getting Started
|
61 |
+
### Prerequisites
|
62 |
+
- Linux or macOS
|
63 |
+
- NVIDIA GPU + CUDA CuDNN (Not mandatory bur recommended)
|
64 |
+
- Python 3
|
65 |
+
|
66 |
+
### Installation
|
67 |
+
- Dependencies:
|
68 |
+
1. lpips
|
69 |
+
2. wandb
|
70 |
+
3. pytorch
|
71 |
+
4. torchvision
|
72 |
+
5. matplotlib
|
73 |
+
6. dlib
|
74 |
+
- All dependencies can be installed using *pip install* and the package name
|
75 |
+
|
76 |
+
## Pretrained Models
|
77 |
+
Please download the pretrained models from the following links.
|
78 |
+
|
79 |
+
### Auxiliary Models
|
80 |
+
We provide various auxiliary models needed for PTI inversion task.
|
81 |
+
This includes the StyleGAN generator and pre-trained models used for loss computation.
|
82 |
+
| Path | Description
|
83 |
+
| :--- | :----------
|
84 |
+
|[FFHQ StyleGAN](https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/ffhq.pkl) | StyleGAN2-ada model trained on FFHQ with 1024x1024 output resolution.
|
85 |
+
|[Dlib alignment](https://drive.google.com/file/d/1HKmjg6iXsWr4aFPuU0gBXPGR83wqMzq7/view?usp=sharing) | Dlib alignment used for images preproccessing.
|
86 |
+
|[FFHQ e4e encoder](https://drive.google.com/file/d/1ALC5CLA89Ouw40TwvxcwebhzWXM5YSCm/view?usp=sharing) | Pretrained e4e encoder. Used for StyleCLIP editing.
|
87 |
+
|
88 |
+
Note: The StyleGAN model is used directly from the official [stylegan2-ada-pytorch implementation](https://github.com/NVlabs/stylegan2-ada-pytorch).
|
89 |
+
For StyleCLIP pretrained mappers, please see [StyleCLIP's official routes](https://github.com/orpatashnik/StyleCLIP/blob/main/utils.py)
|
90 |
+
|
91 |
+
|
92 |
+
By default, we assume that all auxiliary models are downloaded and saved to the directory `pretrained_models`.
|
93 |
+
However, you may use your own paths by changing the necessary values in `configs/path_configs.py`.
|
94 |
+
|
95 |
+
|
96 |
+
## Inversion
|
97 |
+
### Preparing your Data
|
98 |
+
In order to invert a real image and edit it you should first align and crop it to the correct size. To do so you should perform *One* of the following steps:
|
99 |
+
1. Run `notebooks/align_data.ipynb` and change the "images_path" variable to the raw images path
|
100 |
+
2. Run `utils/align_data.py` and change the "images_path" variable to the raw images path
|
101 |
+
|
102 |
+
|
103 |
+
### Weights And Biases
|
104 |
+
The project supports [Weights And Biases](https://wandb.ai/home) framework for experiment tracking. For the inversion task it enables visualization of the losses progression and the generator intermediate results during the initial inversion and the *Pivotal Tuning*(PT) procedure.
|
105 |
+
|
106 |
+
The log frequency can be adjusted using the parameters defined at `configs/global_config.py` under the "Logs" subsection.
|
107 |
+
|
108 |
+
There is no no need to have an account. However, in order to use the features provided by Weights and Biases you first have to register on their site.
|
109 |
+
|
110 |
+
|
111 |
+
### Running PTI
|
112 |
+
The main training script is `scripts/run_pti.py`. The script receives aligned and cropped images from paths configured in the "Input info" subscetion in
|
113 |
+
`configs/paths_config.py`.
|
114 |
+
Results are saved to directories found at "Dirs for output files" under `configs/paths_config.py`. This includes inversion latent codes and tuned generators.
|
115 |
+
The hyperparametrs for the inversion task can be found at `configs/hyperparameters.py`. They are intilized to the default values used in the paper.
|
116 |
+
|
117 |
+
## Editing
|
118 |
+
By default, we assume that all auxiliary edit directions are downloaded and saved to the directory `editings`.
|
119 |
+
However, you may use your own paths by changing the necessary values in `configs/path_configs.py` under "Edit directions" subsection.
|
120 |
+
|
121 |
+
Example of editing code can be found at `scripts/latent_editor_wrapper.py`
|
122 |
+
|
123 |
+
## Inference Notebooks
|
124 |
+
To help visualize the results of PTI we provide a Jupyter notebook found in `notebooks/inference_playground.ipynb`.
|
125 |
+
The notebook will download the pretrained models and run inference on a sample image found online or
|
126 |
+
on images of your choosing. It is recommended to run this in [Google Colab](https://colab.research.google.com/github/danielroich/PTI/blob/main/notebooks/inference_playground.ipynb).
|
127 |
+
|
128 |
+
The notebook demonstrates how to:
|
129 |
+
- Invert an image using PTI
|
130 |
+
- Visualise the inversion and use the PTI output
|
131 |
+
- Edit the image after PTI using InterfaceGAN and StyleCLIP
|
132 |
+
- Compare to other inversion methods
|
133 |
+
|
134 |
+
## Evaluation
|
135 |
+
Currently the repository supports qualitative evaluation for reconstruction of: PTI, SG2 (*W Space*), e4e, SG2Plus (*W+ Space*).
|
136 |
+
As well as editing using InterfaceGAN and GANSpace for the same inversion methods.
|
137 |
+
To run the evaluation please see `evaluation/qualitative_edit_comparison.py`. Examples of the evaluation scripts are:
|
138 |
+
|
139 |
+
<p align="center">
|
140 |
+
<img src="docs/model_rec.jpg"/>
|
141 |
+
<br>
|
142 |
+
Reconsturction comparison between different methods. The images order is: Original image, W+ inversion, e4e inversion, W inversion, PTI inversion
|
143 |
+
</br>
|
144 |
+
</p>
|
145 |
+
|
146 |
+
<p align="center">
|
147 |
+
<img src="docs/stern_rotation.jpg"/>
|
148 |
+
<br>
|
149 |
+
InterfaceGAN pose edit comparison between different methods. The images order is: Original, W+, e4e, W, PTI
|
150 |
+
</br>
|
151 |
+
</p>
|
152 |
+
|
153 |
+
<p align="center">
|
154 |
+
<img src="docs/tyron_original.jpg" width="220" height="220"/>
|
155 |
+
<img src="docs/tyron_edit.jpg" width="220" height="220"/>
|
156 |
+
<br>
|
157 |
+
Image per edit or several edits without comparison
|
158 |
+
</br>
|
159 |
+
</p>
|
160 |
+
|
161 |
+
### Coming Soon - Quantitative evaluation and StyleCLIP qualitative evaluation
|
162 |
+
|
163 |
+
## Repository structure
|
164 |
+
| Path | Description <img width=200>
|
165 |
+
| :--- | :---
|
166 |
+
| ├ configs | Folder containing configs defining Hyperparameters, paths and logging
|
167 |
+
| ├ criteria | Folder containing various loss and regularization criterias for the optimization
|
168 |
+
| ├ dnnlib | Folder containing internal utils for StyleGAN2-ada
|
169 |
+
| ├ docs | Folder containing the latent space edit directions
|
170 |
+
| ├ editings | Folder containing images displayed in the README
|
171 |
+
| ├ environment | Folder containing Anaconda environment used in our experiments
|
172 |
+
| ├ licenses | Folder containing licenses of the open source projects used in this repository
|
173 |
+
| ├ models | Folder containing models used in different editing techniques and first phase inversion
|
174 |
+
| ├ notebooks | Folder with jupyter notebooks to demonstrate the usage of PTI end-to-end
|
175 |
+
| ├ scripts | Folder with running scripts for inversion, editing and metric computations
|
176 |
+
| ├ torch_utils | Folder containing internal utils for StyleGAN2-ada
|
177 |
+
| ├ training | Folder containing the core training logic of PTI
|
178 |
+
| ├ utils | Folder with various utility functions
|
179 |
+
|
180 |
+
|
181 |
+
## Credits
|
182 |
+
**StyleGAN2-ada model and implementation:**
|
183 |
+
https://github.com/NVlabs/stylegan2-ada-pytorch
|
184 |
+
Copyright © 2021, NVIDIA Corporation.
|
185 |
+
Nvidia Source Code License https://nvlabs.github.io/stylegan2-ada-pytorch/license.html
|
186 |
+
|
187 |
+
**LPIPS model and implementation:**
|
188 |
+
https://github.com/richzhang/PerceptualSimilarity
|
189 |
+
Copyright (c) 2020, Sou Uchida
|
190 |
+
License (BSD 2-Clause) https://github.com/richzhang/PerceptualSimilarity/blob/master/LICENSE
|
191 |
+
|
192 |
+
**e4e model and implementation:**
|
193 |
+
https://github.com/omertov/encoder4editing
|
194 |
+
Copyright (c) 2021 omertov
|
195 |
+
License (MIT) https://github.com/omertov/encoder4editing/blob/main/LICENSE
|
196 |
+
|
197 |
+
**StyleCLIP model and implementation:**
|
198 |
+
https://github.com/orpatashnik/StyleCLIP
|
199 |
+
Copyright (c) 2021 orpatashnik
|
200 |
+
License (MIT) https://github.com/orpatashnik/StyleCLIP/blob/main/LICENSE
|
201 |
+
|
202 |
+
**InterfaceGAN implementation:**
|
203 |
+
https://github.com/genforce/interfacegan
|
204 |
+
Copyright (c) 2020 genforce
|
205 |
+
License (MIT) https://github.com/genforce/interfacegan/blob/master/LICENSE
|
206 |
+
|
207 |
+
**GANSpace implementation:**
|
208 |
+
https://github.com/harskish/ganspace
|
209 |
+
Copyright (c) 2020 harkish
|
210 |
+
License (Apache License 2.0) https://github.com/harskish/ganspace/blob/master/LICENSE
|
211 |
+
|
212 |
+
|
213 |
+
## Acknowledgments
|
214 |
+
This repository structure is based on [encoder4editing](https://github.com/omertov/encoder4editing) and [ReStyle](https://github.com/yuval-alaluf/restyle-encoder) repositories
|
215 |
+
|
216 |
+
## Contact
|
217 |
+
For any inquiry please contact us at our email addresses: danielroich@gmail.com or ron.mokady@gmail.com
|
218 |
+
|
219 |
+
|
220 |
+
## Citation
|
221 |
+
If you use this code for your research, please cite:
|
222 |
+
```
|
223 |
+
@article{roich2021pivotal,
|
224 |
+
title={Pivotal Tuning for Latent-based Editing of Real Images},
|
225 |
+
author={Roich, Daniel and Mokady, Ron and Bermano, Amit H and Cohen-Or, Daniel},
|
226 |
+
publisher = {Association for Computing Machinery},
|
227 |
+
journal={ACM Trans. Graph.},
|
228 |
+
year={2021}
|
229 |
+
}
|
230 |
+
```
|
PTI/__init__.py
ADDED
File without changes
|
PTI/configs/__init__.py
ADDED
File without changes
|
PTI/configs/evaluation_config.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
evaluated_methods = ['e4e', 'SG2', 'SG2Plus']
|
PTI/configs/global_config.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Device
|
2 |
+
cuda_visible_devices = '0'
|
3 |
+
device = 'cuda:0'
|
4 |
+
|
5 |
+
# Logs
|
6 |
+
training_step = 1
|
7 |
+
image_rec_result_log_snapshot = 100
|
8 |
+
pivotal_training_steps = 0
|
9 |
+
model_snapshot_interval = 400
|
10 |
+
|
11 |
+
# Run name to be updated during PTI
|
12 |
+
run_name = ''
|
PTI/configs/hyperparameters.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## Architechture
|
2 |
+
lpips_type = "alex"
|
3 |
+
first_inv_type = "w"
|
4 |
+
optim_type = "adam"
|
5 |
+
|
6 |
+
## Locality regularization
|
7 |
+
latent_ball_num_of_samples = 1
|
8 |
+
locality_regularization_interval = 1
|
9 |
+
use_locality_regularization = False
|
10 |
+
regulizer_l2_lambda = 0.1
|
11 |
+
regulizer_lpips_lambda = 0.1
|
12 |
+
regulizer_alpha = 30
|
13 |
+
|
14 |
+
## Loss
|
15 |
+
pt_l2_lambda = 1
|
16 |
+
pt_lpips_lambda = 1
|
17 |
+
|
18 |
+
## Steps
|
19 |
+
LPIPS_value_threshold = 0.06
|
20 |
+
max_pti_steps = 350
|
21 |
+
first_inv_steps = 450
|
22 |
+
max_images_to_invert = 30
|
23 |
+
|
24 |
+
## Optimization
|
25 |
+
pti_learning_rate = 3e-4
|
26 |
+
first_inv_lr = 5e-3
|
27 |
+
train_batch_size = 1
|
28 |
+
use_last_w_pivots = False
|
PTI/configs/paths_config.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## Pretrained models paths
|
2 |
+
e4e = 'PTI/pretrained_models/e4e_ffhq_encode.pt'
|
3 |
+
stylegan2_ada_ffhq = '../PTI/pretrained_models/ffhq.pkl'
|
4 |
+
style_clip_pretrained_mappers = ''
|
5 |
+
ir_se50 = 'PTI/pretrained_models/model_ir_se50.pth'
|
6 |
+
dlib = 'PTI/pretrained_models/align.dat'
|
7 |
+
|
8 |
+
## Dirs for output files
|
9 |
+
checkpoints_dir = 'PTI/checkpoints'
|
10 |
+
embedding_base_dir = 'PTI/embeddings'
|
11 |
+
styleclip_output_dir = 'PTI/StyleCLIP_results'
|
12 |
+
experiments_output_dir = 'PTI/output'
|
13 |
+
|
14 |
+
## Input info
|
15 |
+
### Input dir, where the images reside
|
16 |
+
input_data_path = ''
|
17 |
+
### Inversion identifier, used to keeping track of the inversion results. Both the latent code and the generator
|
18 |
+
input_data_id = 'barcelona'
|
19 |
+
|
20 |
+
## Keywords
|
21 |
+
pti_results_keyword = 'PTI'
|
22 |
+
e4e_results_keyword = 'e4e'
|
23 |
+
sg2_results_keyword = 'SG2'
|
24 |
+
sg2_plus_results_keyword = 'SG2_plus'
|
25 |
+
multi_id_model_type = 'multi_id'
|
26 |
+
|
27 |
+
## Edit directions
|
28 |
+
interfacegan_age = 'PTI/editings/interfacegan_directions/age.pt'
|
29 |
+
interfacegan_smile = 'PTI/editings/interfacegan_directions/smile.pt'
|
30 |
+
interfacegan_rotation = 'PTI/editings/interfacegan_directions/rotation.pt'
|
31 |
+
ffhq_pca = 'PTI/editings/ganspace_pca/ffhq_pca.pt'
|
PTI/criteria/__init__.py
ADDED
File without changes
|
PTI/criteria/l2_loss.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
l2_criterion = torch.nn.MSELoss(reduction='mean')
|
4 |
+
|
5 |
+
|
6 |
+
def l2_loss(real_images, generated_images):
|
7 |
+
loss = l2_criterion(real_images, generated_images)
|
8 |
+
return loss
|
PTI/criteria/localitly_regulizer.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
from PTI.criteria import l2_loss
|
4 |
+
from PTI.configs import hyperparameters
|
5 |
+
from PTI.configs import global_config
|
6 |
+
|
7 |
+
|
8 |
+
class Space_Regulizer:
|
9 |
+
def __init__(self, original_G, lpips_net):
|
10 |
+
self.original_G = original_G
|
11 |
+
self.morphing_regulizer_alpha = hyperparameters.regulizer_alpha
|
12 |
+
self.lpips_loss = lpips_net
|
13 |
+
|
14 |
+
def get_morphed_w_code(self, new_w_code, fixed_w):
|
15 |
+
interpolation_direction = new_w_code - fixed_w
|
16 |
+
interpolation_direction_norm = torch.norm(interpolation_direction, p=2)
|
17 |
+
direction_to_move = hyperparameters.regulizer_alpha * \
|
18 |
+
interpolation_direction / interpolation_direction_norm
|
19 |
+
result_w = fixed_w + direction_to_move
|
20 |
+
self.morphing_regulizer_alpha * fixed_w + \
|
21 |
+
(1 - self.morphing_regulizer_alpha) * new_w_code
|
22 |
+
|
23 |
+
return result_w
|
24 |
+
|
25 |
+
def get_image_from_ws(self, w_codes, G):
|
26 |
+
return torch.cat([G.synthesis(w_code, noise_mode='none', force_fp32=True) for w_code in w_codes])
|
27 |
+
|
28 |
+
def ball_holder_loss_lazy(self, new_G, num_of_sampled_latents, w_batch, use_wandb=False):
|
29 |
+
loss = 0.0
|
30 |
+
|
31 |
+
z_samples = np.random.randn(
|
32 |
+
num_of_sampled_latents, self.original_G.z_dim)
|
33 |
+
w_samples = self.original_G.mapping(torch.from_numpy(z_samples).to(global_config.device), None,
|
34 |
+
truncation_psi=0.5)
|
35 |
+
territory_indicator_ws = [self.get_morphed_w_code(
|
36 |
+
w_code.unsqueeze(0), w_batch) for w_code in w_samples]
|
37 |
+
|
38 |
+
for w_code in territory_indicator_ws:
|
39 |
+
new_img = new_G.synthesis(
|
40 |
+
w_code, noise_mode='none', force_fp32=True)
|
41 |
+
with torch.no_grad():
|
42 |
+
old_img = self.original_G.synthesis(
|
43 |
+
w_code, noise_mode='none', force_fp32=True)
|
44 |
+
|
45 |
+
if hyperparameters.regulizer_l2_lambda > 0:
|
46 |
+
l2_loss_val = l2_loss.l2_loss(old_img, new_img)
|
47 |
+
if use_wandb:
|
48 |
+
wandb.log({f'space_regulizer_l2_loss_val': l2_loss_val.detach().cpu()},
|
49 |
+
step=global_config.training_step)
|
50 |
+
loss += l2_loss_val * hyperparameters.regulizer_l2_lambda
|
51 |
+
|
52 |
+
if hyperparameters.regulizer_lpips_lambda > 0:
|
53 |
+
loss_lpips = self.lpips_loss(old_img, new_img)
|
54 |
+
loss_lpips = torch.mean(torch.squeeze(loss_lpips))
|
55 |
+
if use_wandb:
|
56 |
+
wandb.log({f'space_regulizer_lpips_loss_val': loss_lpips.detach().cpu()},
|
57 |
+
step=global_config.training_step)
|
58 |
+
loss += loss_lpips * hyperparameters.regulizer_lpips_lambda
|
59 |
+
|
60 |
+
return loss / len(territory_indicator_ws)
|
61 |
+
|
62 |
+
def space_regulizer_loss(self, new_G, w_batch, use_wandb):
|
63 |
+
ret_val = self.ball_holder_loss_lazy(
|
64 |
+
new_G, hyperparameters.latent_ball_num_of_samples, w_batch, use_wandb)
|
65 |
+
return ret_val
|
PTI/dnnlib/__init__.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
from .util import EasyDict, make_cache_dir_path
|
PTI/dnnlib/util.py
ADDED
@@ -0,0 +1,477 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
"""Miscellaneous utility classes and functions."""
|
10 |
+
|
11 |
+
import ctypes
|
12 |
+
import fnmatch
|
13 |
+
import importlib
|
14 |
+
import inspect
|
15 |
+
import numpy as np
|
16 |
+
import os
|
17 |
+
import shutil
|
18 |
+
import sys
|
19 |
+
import types
|
20 |
+
import io
|
21 |
+
import pickle
|
22 |
+
import re
|
23 |
+
import requests
|
24 |
+
import html
|
25 |
+
import hashlib
|
26 |
+
import glob
|
27 |
+
import tempfile
|
28 |
+
import urllib
|
29 |
+
import urllib.request
|
30 |
+
import uuid
|
31 |
+
|
32 |
+
from distutils.util import strtobool
|
33 |
+
from typing import Any, List, Tuple, Union
|
34 |
+
|
35 |
+
|
36 |
+
# Util classes
|
37 |
+
# ------------------------------------------------------------------------------------------
|
38 |
+
|
39 |
+
|
40 |
+
class EasyDict(dict):
|
41 |
+
"""Convenience class that behaves like a dict but allows access with the attribute syntax."""
|
42 |
+
|
43 |
+
def __getattr__(self, name: str) -> Any:
|
44 |
+
try:
|
45 |
+
return self[name]
|
46 |
+
except KeyError:
|
47 |
+
raise AttributeError(name)
|
48 |
+
|
49 |
+
def __setattr__(self, name: str, value: Any) -> None:
|
50 |
+
self[name] = value
|
51 |
+
|
52 |
+
def __delattr__(self, name: str) -> None:
|
53 |
+
del self[name]
|
54 |
+
|
55 |
+
|
56 |
+
class Logger(object):
|
57 |
+
"""Redirect stderr to stdout, optionally print stdout to a file, and optionally force flushing on both stdout and the file."""
|
58 |
+
|
59 |
+
def __init__(self, file_name: str = None, file_mode: str = "w", should_flush: bool = True):
|
60 |
+
self.file = None
|
61 |
+
|
62 |
+
if file_name is not None:
|
63 |
+
self.file = open(file_name, file_mode)
|
64 |
+
|
65 |
+
self.should_flush = should_flush
|
66 |
+
self.stdout = sys.stdout
|
67 |
+
self.stderr = sys.stderr
|
68 |
+
|
69 |
+
sys.stdout = self
|
70 |
+
sys.stderr = self
|
71 |
+
|
72 |
+
def __enter__(self) -> "Logger":
|
73 |
+
return self
|
74 |
+
|
75 |
+
def __exit__(self, exc_type: Any, exc_value: Any, traceback: Any) -> None:
|
76 |
+
self.close()
|
77 |
+
|
78 |
+
def write(self, text: Union[str, bytes]) -> None:
|
79 |
+
"""Write text to stdout (and a file) and optionally flush."""
|
80 |
+
if isinstance(text, bytes):
|
81 |
+
text = text.decode()
|
82 |
+
if len(text) == 0: # workaround for a bug in VSCode debugger: sys.stdout.write(''); sys.stdout.flush() => crash
|
83 |
+
return
|
84 |
+
|
85 |
+
if self.file is not None:
|
86 |
+
self.file.write(text)
|
87 |
+
|
88 |
+
self.stdout.write(text)
|
89 |
+
|
90 |
+
if self.should_flush:
|
91 |
+
self.flush()
|
92 |
+
|
93 |
+
def flush(self) -> None:
|
94 |
+
"""Flush written text to both stdout and a file, if open."""
|
95 |
+
if self.file is not None:
|
96 |
+
self.file.flush()
|
97 |
+
|
98 |
+
self.stdout.flush()
|
99 |
+
|
100 |
+
def close(self) -> None:
|
101 |
+
"""Flush, close possible files, and remove stdout/stderr mirroring."""
|
102 |
+
self.flush()
|
103 |
+
|
104 |
+
# if using multiple loggers, prevent closing in wrong order
|
105 |
+
if sys.stdout is self:
|
106 |
+
sys.stdout = self.stdout
|
107 |
+
if sys.stderr is self:
|
108 |
+
sys.stderr = self.stderr
|
109 |
+
|
110 |
+
if self.file is not None:
|
111 |
+
self.file.close()
|
112 |
+
self.file = None
|
113 |
+
|
114 |
+
|
115 |
+
# Cache directories
|
116 |
+
# ------------------------------------------------------------------------------------------
|
117 |
+
|
118 |
+
_dnnlib_cache_dir = None
|
119 |
+
|
120 |
+
def set_cache_dir(path: str) -> None:
|
121 |
+
global _dnnlib_cache_dir
|
122 |
+
_dnnlib_cache_dir = path
|
123 |
+
|
124 |
+
def make_cache_dir_path(*paths: str) -> str:
|
125 |
+
if _dnnlib_cache_dir is not None:
|
126 |
+
return os.path.join(_dnnlib_cache_dir, *paths)
|
127 |
+
if 'DNNLIB_CACHE_DIR' in os.environ:
|
128 |
+
return os.path.join(os.environ['DNNLIB_CACHE_DIR'], *paths)
|
129 |
+
if 'HOME' in os.environ:
|
130 |
+
return os.path.join(os.environ['HOME'], '.cache', 'dnnlib', *paths)
|
131 |
+
if 'USERPROFILE' in os.environ:
|
132 |
+
return os.path.join(os.environ['USERPROFILE'], '.cache', 'dnnlib', *paths)
|
133 |
+
return os.path.join(tempfile.gettempdir(), '.cache', 'dnnlib', *paths)
|
134 |
+
|
135 |
+
# Small util functions
|
136 |
+
# ------------------------------------------------------------------------------------------
|
137 |
+
|
138 |
+
|
139 |
+
def format_time(seconds: Union[int, float]) -> str:
|
140 |
+
"""Convert the seconds to human readable string with days, hours, minutes and seconds."""
|
141 |
+
s = int(np.rint(seconds))
|
142 |
+
|
143 |
+
if s < 60:
|
144 |
+
return "{0}s".format(s)
|
145 |
+
elif s < 60 * 60:
|
146 |
+
return "{0}m {1:02}s".format(s // 60, s % 60)
|
147 |
+
elif s < 24 * 60 * 60:
|
148 |
+
return "{0}h {1:02}m {2:02}s".format(s // (60 * 60), (s // 60) % 60, s % 60)
|
149 |
+
else:
|
150 |
+
return "{0}d {1:02}h {2:02}m".format(s // (24 * 60 * 60), (s // (60 * 60)) % 24, (s // 60) % 60)
|
151 |
+
|
152 |
+
|
153 |
+
def ask_yes_no(question: str) -> bool:
|
154 |
+
"""Ask the user the question until the user inputs a valid answer."""
|
155 |
+
while True:
|
156 |
+
try:
|
157 |
+
print("{0} [y/n]".format(question))
|
158 |
+
return strtobool(input().lower())
|
159 |
+
except ValueError:
|
160 |
+
pass
|
161 |
+
|
162 |
+
|
163 |
+
def tuple_product(t: Tuple) -> Any:
|
164 |
+
"""Calculate the product of the tuple elements."""
|
165 |
+
result = 1
|
166 |
+
|
167 |
+
for v in t:
|
168 |
+
result *= v
|
169 |
+
|
170 |
+
return result
|
171 |
+
|
172 |
+
|
173 |
+
_str_to_ctype = {
|
174 |
+
"uint8": ctypes.c_ubyte,
|
175 |
+
"uint16": ctypes.c_uint16,
|
176 |
+
"uint32": ctypes.c_uint32,
|
177 |
+
"uint64": ctypes.c_uint64,
|
178 |
+
"int8": ctypes.c_byte,
|
179 |
+
"int16": ctypes.c_int16,
|
180 |
+
"int32": ctypes.c_int32,
|
181 |
+
"int64": ctypes.c_int64,
|
182 |
+
"float32": ctypes.c_float,
|
183 |
+
"float64": ctypes.c_double
|
184 |
+
}
|
185 |
+
|
186 |
+
|
187 |
+
def get_dtype_and_ctype(type_obj: Any) -> Tuple[np.dtype, Any]:
|
188 |
+
"""Given a type name string (or an object having a __name__ attribute), return matching Numpy and ctypes types that have the same size in bytes."""
|
189 |
+
type_str = None
|
190 |
+
|
191 |
+
if isinstance(type_obj, str):
|
192 |
+
type_str = type_obj
|
193 |
+
elif hasattr(type_obj, "__name__"):
|
194 |
+
type_str = type_obj.__name__
|
195 |
+
elif hasattr(type_obj, "name"):
|
196 |
+
type_str = type_obj.name
|
197 |
+
else:
|
198 |
+
raise RuntimeError("Cannot infer type name from input")
|
199 |
+
|
200 |
+
assert type_str in _str_to_ctype.keys()
|
201 |
+
|
202 |
+
my_dtype = np.dtype(type_str)
|
203 |
+
my_ctype = _str_to_ctype[type_str]
|
204 |
+
|
205 |
+
assert my_dtype.itemsize == ctypes.sizeof(my_ctype)
|
206 |
+
|
207 |
+
return my_dtype, my_ctype
|
208 |
+
|
209 |
+
|
210 |
+
def is_pickleable(obj: Any) -> bool:
|
211 |
+
try:
|
212 |
+
with io.BytesIO() as stream:
|
213 |
+
pickle.dump(obj, stream)
|
214 |
+
return True
|
215 |
+
except:
|
216 |
+
return False
|
217 |
+
|
218 |
+
|
219 |
+
# Functionality to import modules/objects by name, and call functions by name
|
220 |
+
# ------------------------------------------------------------------------------------------
|
221 |
+
|
222 |
+
def get_module_from_obj_name(obj_name: str) -> Tuple[types.ModuleType, str]:
|
223 |
+
"""Searches for the underlying module behind the name to some python object.
|
224 |
+
Returns the module and the object name (original name with module part removed)."""
|
225 |
+
|
226 |
+
# allow convenience shorthands, substitute them by full names
|
227 |
+
obj_name = re.sub("^np.", "numpy.", obj_name)
|
228 |
+
obj_name = re.sub("^tf.", "tensorflow.", obj_name)
|
229 |
+
|
230 |
+
# list alternatives for (module_name, local_obj_name)
|
231 |
+
parts = obj_name.split(".")
|
232 |
+
name_pairs = [(".".join(parts[:i]), ".".join(parts[i:])) for i in range(len(parts), 0, -1)]
|
233 |
+
|
234 |
+
# try each alternative in turn
|
235 |
+
for module_name, local_obj_name in name_pairs:
|
236 |
+
try:
|
237 |
+
module = importlib.import_module(module_name) # may raise ImportError
|
238 |
+
get_obj_from_module(module, local_obj_name) # may raise AttributeError
|
239 |
+
return module, local_obj_name
|
240 |
+
except:
|
241 |
+
pass
|
242 |
+
|
243 |
+
# maybe some of the modules themselves contain errors?
|
244 |
+
for module_name, _local_obj_name in name_pairs:
|
245 |
+
try:
|
246 |
+
importlib.import_module(module_name) # may raise ImportError
|
247 |
+
except ImportError:
|
248 |
+
if not str(sys.exc_info()[1]).startswith("No module named '" + module_name + "'"):
|
249 |
+
raise
|
250 |
+
|
251 |
+
# maybe the requested attribute is missing?
|
252 |
+
for module_name, local_obj_name in name_pairs:
|
253 |
+
try:
|
254 |
+
module = importlib.import_module(module_name) # may raise ImportError
|
255 |
+
get_obj_from_module(module, local_obj_name) # may raise AttributeError
|
256 |
+
except ImportError:
|
257 |
+
pass
|
258 |
+
|
259 |
+
# we are out of luck, but we have no idea why
|
260 |
+
raise ImportError(obj_name)
|
261 |
+
|
262 |
+
|
263 |
+
def get_obj_from_module(module: types.ModuleType, obj_name: str) -> Any:
|
264 |
+
"""Traverses the object name and returns the last (rightmost) python object."""
|
265 |
+
if obj_name == '':
|
266 |
+
return module
|
267 |
+
obj = module
|
268 |
+
for part in obj_name.split("."):
|
269 |
+
obj = getattr(obj, part)
|
270 |
+
return obj
|
271 |
+
|
272 |
+
|
273 |
+
def get_obj_by_name(name: str) -> Any:
|
274 |
+
"""Finds the python object with the given name."""
|
275 |
+
module, obj_name = get_module_from_obj_name(name)
|
276 |
+
return get_obj_from_module(module, obj_name)
|
277 |
+
|
278 |
+
|
279 |
+
def call_func_by_name(*args, func_name: str = None, **kwargs) -> Any:
|
280 |
+
"""Finds the python object with the given name and calls it as a function."""
|
281 |
+
assert func_name is not None
|
282 |
+
func_obj = get_obj_by_name(func_name)
|
283 |
+
assert callable(func_obj)
|
284 |
+
return func_obj(*args, **kwargs)
|
285 |
+
|
286 |
+
|
287 |
+
def construct_class_by_name(*args, class_name: str = None, **kwargs) -> Any:
|
288 |
+
"""Finds the python class with the given name and constructs it with the given arguments."""
|
289 |
+
return call_func_by_name(*args, func_name=class_name, **kwargs)
|
290 |
+
|
291 |
+
|
292 |
+
def get_module_dir_by_obj_name(obj_name: str) -> str:
|
293 |
+
"""Get the directory path of the module containing the given object name."""
|
294 |
+
module, _ = get_module_from_obj_name(obj_name)
|
295 |
+
return os.path.dirname(inspect.getfile(module))
|
296 |
+
|
297 |
+
|
298 |
+
def is_top_level_function(obj: Any) -> bool:
|
299 |
+
"""Determine whether the given object is a top-level function, i.e., defined at module scope using 'def'."""
|
300 |
+
return callable(obj) and obj.__name__ in sys.modules[obj.__module__].__dict__
|
301 |
+
|
302 |
+
|
303 |
+
def get_top_level_function_name(obj: Any) -> str:
|
304 |
+
"""Return the fully-qualified name of a top-level function."""
|
305 |
+
assert is_top_level_function(obj)
|
306 |
+
module = obj.__module__
|
307 |
+
if module == '__main__':
|
308 |
+
module = os.path.splitext(os.path.basename(sys.modules[module].__file__))[0]
|
309 |
+
return module + "." + obj.__name__
|
310 |
+
|
311 |
+
|
312 |
+
# File system helpers
|
313 |
+
# ------------------------------------------------------------------------------------------
|
314 |
+
|
315 |
+
def list_dir_recursively_with_ignore(dir_path: str, ignores: List[str] = None, add_base_to_relative: bool = False) -> List[Tuple[str, str]]:
|
316 |
+
"""List all files recursively in a given directory while ignoring given file and directory names.
|
317 |
+
Returns list of tuples containing both absolute and relative paths."""
|
318 |
+
assert os.path.isdir(dir_path)
|
319 |
+
base_name = os.path.basename(os.path.normpath(dir_path))
|
320 |
+
|
321 |
+
if ignores is None:
|
322 |
+
ignores = []
|
323 |
+
|
324 |
+
result = []
|
325 |
+
|
326 |
+
for root, dirs, files in os.walk(dir_path, topdown=True):
|
327 |
+
for ignore_ in ignores:
|
328 |
+
dirs_to_remove = [d for d in dirs if fnmatch.fnmatch(d, ignore_)]
|
329 |
+
|
330 |
+
# dirs need to be edited in-place
|
331 |
+
for d in dirs_to_remove:
|
332 |
+
dirs.remove(d)
|
333 |
+
|
334 |
+
files = [f for f in files if not fnmatch.fnmatch(f, ignore_)]
|
335 |
+
|
336 |
+
absolute_paths = [os.path.join(root, f) for f in files]
|
337 |
+
relative_paths = [os.path.relpath(p, dir_path) for p in absolute_paths]
|
338 |
+
|
339 |
+
if add_base_to_relative:
|
340 |
+
relative_paths = [os.path.join(base_name, p) for p in relative_paths]
|
341 |
+
|
342 |
+
assert len(absolute_paths) == len(relative_paths)
|
343 |
+
result += zip(absolute_paths, relative_paths)
|
344 |
+
|
345 |
+
return result
|
346 |
+
|
347 |
+
|
348 |
+
def copy_files_and_create_dirs(files: List[Tuple[str, str]]) -> None:
|
349 |
+
"""Takes in a list of tuples of (src, dst) paths and copies files.
|
350 |
+
Will create all necessary directories."""
|
351 |
+
for file in files:
|
352 |
+
target_dir_name = os.path.dirname(file[1])
|
353 |
+
|
354 |
+
# will create all intermediate-level directories
|
355 |
+
if not os.path.exists(target_dir_name):
|
356 |
+
os.makedirs(target_dir_name)
|
357 |
+
|
358 |
+
shutil.copyfile(file[0], file[1])
|
359 |
+
|
360 |
+
|
361 |
+
# URL helpers
|
362 |
+
# ------------------------------------------------------------------------------------------
|
363 |
+
|
364 |
+
def is_url(obj: Any, allow_file_urls: bool = False) -> bool:
|
365 |
+
"""Determine whether the given object is a valid URL string."""
|
366 |
+
if not isinstance(obj, str) or not "://" in obj:
|
367 |
+
return False
|
368 |
+
if allow_file_urls and obj.startswith('file://'):
|
369 |
+
return True
|
370 |
+
try:
|
371 |
+
res = requests.compat.urlparse(obj)
|
372 |
+
if not res.scheme or not res.netloc or not "." in res.netloc:
|
373 |
+
return False
|
374 |
+
res = requests.compat.urlparse(requests.compat.urljoin(obj, "/"))
|
375 |
+
if not res.scheme or not res.netloc or not "." in res.netloc:
|
376 |
+
return False
|
377 |
+
except:
|
378 |
+
return False
|
379 |
+
return True
|
380 |
+
|
381 |
+
|
382 |
+
def open_url(url: str, cache_dir: str = None, num_attempts: int = 10, verbose: bool = True, return_filename: bool = False, cache: bool = True) -> Any:
|
383 |
+
"""Download the given URL and return a binary-mode file object to access the data."""
|
384 |
+
assert num_attempts >= 1
|
385 |
+
assert not (return_filename and (not cache))
|
386 |
+
|
387 |
+
# Doesn't look like an URL scheme so interpret it as a local filename.
|
388 |
+
if not re.match('^[a-z]+://', url):
|
389 |
+
return url if return_filename else open(url, "rb")
|
390 |
+
|
391 |
+
# Handle file URLs. This code handles unusual file:// patterns that
|
392 |
+
# arise on Windows:
|
393 |
+
#
|
394 |
+
# file:///c:/foo.txt
|
395 |
+
#
|
396 |
+
# which would translate to a local '/c:/foo.txt' filename that's
|
397 |
+
# invalid. Drop the forward slash for such pathnames.
|
398 |
+
#
|
399 |
+
# If you touch this code path, you should test it on both Linux and
|
400 |
+
# Windows.
|
401 |
+
#
|
402 |
+
# Some internet resources suggest using urllib.request.url2pathname() but
|
403 |
+
# but that converts forward slashes to backslashes and this causes
|
404 |
+
# its own set of problems.
|
405 |
+
if url.startswith('file://'):
|
406 |
+
filename = urllib.parse.urlparse(url).path
|
407 |
+
if re.match(r'^/[a-zA-Z]:', filename):
|
408 |
+
filename = filename[1:]
|
409 |
+
return filename if return_filename else open(filename, "rb")
|
410 |
+
|
411 |
+
assert is_url(url)
|
412 |
+
|
413 |
+
# Lookup from cache.
|
414 |
+
if cache_dir is None:
|
415 |
+
cache_dir = make_cache_dir_path('downloads')
|
416 |
+
|
417 |
+
url_md5 = hashlib.md5(url.encode("utf-8")).hexdigest()
|
418 |
+
if cache:
|
419 |
+
cache_files = glob.glob(os.path.join(cache_dir, url_md5 + "_*"))
|
420 |
+
if len(cache_files) == 1:
|
421 |
+
filename = cache_files[0]
|
422 |
+
return filename if return_filename else open(filename, "rb")
|
423 |
+
|
424 |
+
# Download.
|
425 |
+
url_name = None
|
426 |
+
url_data = None
|
427 |
+
with requests.Session() as session:
|
428 |
+
if verbose:
|
429 |
+
print("Downloading %s ..." % url, end="", flush=True)
|
430 |
+
for attempts_left in reversed(range(num_attempts)):
|
431 |
+
try:
|
432 |
+
with session.get(url) as res:
|
433 |
+
res.raise_for_status()
|
434 |
+
if len(res.content) == 0:
|
435 |
+
raise IOError("No data received")
|
436 |
+
|
437 |
+
if len(res.content) < 8192:
|
438 |
+
content_str = res.content.decode("utf-8")
|
439 |
+
if "download_warning" in res.headers.get("Set-Cookie", ""):
|
440 |
+
links = [html.unescape(link) for link in content_str.split('"') if "export=download" in link]
|
441 |
+
if len(links) == 1:
|
442 |
+
url = requests.compat.urljoin(url, links[0])
|
443 |
+
raise IOError("Google Drive virus checker nag")
|
444 |
+
if "Google Drive - Quota exceeded" in content_str:
|
445 |
+
raise IOError("Google Drive download quota exceeded -- please try again later")
|
446 |
+
|
447 |
+
match = re.search(r'filename="([^"]*)"', res.headers.get("Content-Disposition", ""))
|
448 |
+
url_name = match[1] if match else url
|
449 |
+
url_data = res.content
|
450 |
+
if verbose:
|
451 |
+
print(" done")
|
452 |
+
break
|
453 |
+
except KeyboardInterrupt:
|
454 |
+
raise
|
455 |
+
except:
|
456 |
+
if not attempts_left:
|
457 |
+
if verbose:
|
458 |
+
print(" failed")
|
459 |
+
raise
|
460 |
+
if verbose:
|
461 |
+
print(".", end="", flush=True)
|
462 |
+
|
463 |
+
# Save to cache.
|
464 |
+
if cache:
|
465 |
+
safe_name = re.sub(r"[^0-9a-zA-Z-._]", "_", url_name)
|
466 |
+
cache_file = os.path.join(cache_dir, url_md5 + "_" + safe_name)
|
467 |
+
temp_file = os.path.join(cache_dir, "tmp_" + uuid.uuid4().hex + "_" + url_md5 + "_" + safe_name)
|
468 |
+
os.makedirs(cache_dir, exist_ok=True)
|
469 |
+
with open(temp_file, "wb") as f:
|
470 |
+
f.write(url_data)
|
471 |
+
os.replace(temp_file, cache_file) # atomic
|
472 |
+
if return_filename:
|
473 |
+
return cache_file
|
474 |
+
|
475 |
+
# Return data as file object.
|
476 |
+
assert not return_filename
|
477 |
+
return io.BytesIO(url_data)
|
PTI/docs/joker_original.jpg
ADDED
Git LFS Details
|
PTI/docs/joker_rotation.jpg
ADDED
Git LFS Details
|
PTI/docs/model_rec.jpg
ADDED
Git LFS Details
|
PTI/docs/stern_rotation.jpg
ADDED
Git LFS Details
|
PTI/docs/teaser.jpg
ADDED
Git LFS Details
|
PTI/docs/tyron_edit.jpg
ADDED
Git LFS Details
|
PTI/docs/tyron_original.jpg
ADDED
Git LFS Details
|
PTI/editings/ganspace.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
|
4 |
+
def edit(latents, pca, edit_directions):
|
5 |
+
edit_latents = []
|
6 |
+
for latent in latents:
|
7 |
+
for pca_idx, start, end, strength in edit_directions:
|
8 |
+
delta = get_delta(pca, latent, pca_idx, strength)
|
9 |
+
delta_padded = torch.zeros(latent.shape).to('cuda')
|
10 |
+
delta_padded[start:end] += delta.repeat(end - start, 1)
|
11 |
+
edit_latents.append(latent + delta_padded)
|
12 |
+
return torch.stack(edit_latents)
|
13 |
+
|
14 |
+
|
15 |
+
def get_delta(pca, latent, idx, strength):
|
16 |
+
w_centered = latent - pca['mean'].to('cuda')
|
17 |
+
lat_comp = pca['comp'].to('cuda')
|
18 |
+
lat_std = pca['std'].to('cuda')
|
19 |
+
w_coord = torch.sum(w_centered[0].reshape(-1)*lat_comp[idx].reshape(-1)) / lat_std[idx]
|
20 |
+
delta = (strength - w_coord)*lat_comp[idx]*lat_std[idx]
|
21 |
+
return delta
|
PTI/editings/ganspace_pca/ffhq_pca.pt
ADDED
Binary file (168 kB). View file
|
|
PTI/editings/interfacegan_directions/age.pt
ADDED
Binary file (2.81 kB). View file
|
|
PTI/editings/interfacegan_directions/rotation.pt
ADDED
Binary file (2.81 kB). View file
|
|
PTI/editings/interfacegan_directions/smile.pt
ADDED
Binary file (2.81 kB). View file
|
|
PTI/editings/latent_editor.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
from configs import paths_config
|
4 |
+
from editings import ganspace
|
5 |
+
from utils.data_utils import tensor2im
|
6 |
+
|
7 |
+
|
8 |
+
class LatentEditor(object):
|
9 |
+
|
10 |
+
def apply_ganspace(self, latent, ganspace_pca, edit_directions):
|
11 |
+
edit_latents = ganspace.edit(latent, ganspace_pca, edit_directions)
|
12 |
+
return edit_latents
|
13 |
+
|
14 |
+
def apply_interfacegan(self, latent, direction, factor=1, factor_range=None):
|
15 |
+
edit_latents = []
|
16 |
+
if factor_range is not None: # Apply a range of editing factors. for example, (-5, 5)
|
17 |
+
for f in range(*factor_range):
|
18 |
+
edit_latent = latent + f * direction
|
19 |
+
edit_latents.append(edit_latent)
|
20 |
+
edit_latents = torch.cat(edit_latents)
|
21 |
+
else:
|
22 |
+
edit_latents = latent + factor * direction
|
23 |
+
return edit_latents
|
PTI/evaluation/experiment_setting_creator.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import glob
|
2 |
+
import os
|
3 |
+
from configs import global_config, paths_config, hyperparameters
|
4 |
+
from scripts.latent_creators.sg2_plus_latent_creator import SG2PlusLatentCreator
|
5 |
+
from scripts.latent_creators.e4e_latent_creator import E4ELatentCreator
|
6 |
+
from scripts.run_pti import run_PTI
|
7 |
+
import pickle
|
8 |
+
import torch
|
9 |
+
from utils.models_utils import toogle_grad, load_old_G
|
10 |
+
|
11 |
+
|
12 |
+
class ExperimentRunner:
|
13 |
+
|
14 |
+
def __init__(self, run_id=''):
|
15 |
+
self.images_paths = glob.glob(f'{paths_config.input_data_path}/*')
|
16 |
+
self.target_paths = glob.glob(f'{paths_config.input_data_path}/*')
|
17 |
+
self.run_id = run_id
|
18 |
+
self.sampled_ws = None
|
19 |
+
|
20 |
+
self.old_G = load_old_G()
|
21 |
+
|
22 |
+
toogle_grad(self.old_G, False)
|
23 |
+
|
24 |
+
def run_experiment(self, run_pt, create_other_latents, use_multi_id_training, use_wandb=False):
|
25 |
+
if run_pt:
|
26 |
+
self.run_id = run_PTI(self.run_id, use_wandb=use_wandb, use_multi_id_training=use_multi_id_training)
|
27 |
+
if create_other_latents:
|
28 |
+
sg2_plus_latent_creator = SG2PlusLatentCreator(use_wandb=use_wandb)
|
29 |
+
sg2_plus_latent_creator.create_latents()
|
30 |
+
e4e_latent_creator = E4ELatentCreator(use_wandb=use_wandb)
|
31 |
+
e4e_latent_creator.create_latents()
|
32 |
+
|
33 |
+
torch.cuda.empty_cache()
|
34 |
+
|
35 |
+
return self.run_id
|
36 |
+
|
37 |
+
|
38 |
+
if __name__ == '__main__':
|
39 |
+
os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
|
40 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = global_config.cuda_visible_devices
|
41 |
+
|
42 |
+
runner = ExperimentRunner()
|
43 |
+
runner.run_experiment(True, False, False)
|
PTI/evaluation/qualitative_edit_comparison.py
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from random import choice
|
3 |
+
from string import ascii_uppercase
|
4 |
+
from PIL import Image
|
5 |
+
from tqdm import tqdm
|
6 |
+
from scripts.latent_editor_wrapper import LatentEditorWrapper
|
7 |
+
from evaluation.experiment_setting_creator import ExperimentRunner
|
8 |
+
import torch
|
9 |
+
from configs import paths_config, hyperparameters, evaluation_config
|
10 |
+
from utils.log_utils import save_concat_image, save_single_image
|
11 |
+
from utils.models_utils import load_tuned_G
|
12 |
+
|
13 |
+
|
14 |
+
class EditComparison:
|
15 |
+
|
16 |
+
def __init__(self, save_single_images, save_concatenated_images, run_id):
|
17 |
+
|
18 |
+
self.run_id = run_id
|
19 |
+
self.experiment_creator = ExperimentRunner(run_id)
|
20 |
+
self.save_single_images = save_single_images
|
21 |
+
self.save_concatenated_images = save_concatenated_images
|
22 |
+
self.latent_editor = LatentEditorWrapper()
|
23 |
+
|
24 |
+
def save_reconstruction_images(self, image_latents, new_inv_image_latent, new_G, target_image):
|
25 |
+
if self.save_concatenated_images:
|
26 |
+
save_concat_image(self.concat_base_dir, image_latents, new_inv_image_latent, new_G,
|
27 |
+
self.experiment_creator.old_G,
|
28 |
+
'rec',
|
29 |
+
target_image)
|
30 |
+
|
31 |
+
if self.save_single_images:
|
32 |
+
save_single_image(self.single_base_dir, new_inv_image_latent, new_G, 'rec')
|
33 |
+
target_image.save(f'{self.single_base_dir}/Original.jpg')
|
34 |
+
|
35 |
+
def create_output_dirs(self, full_image_name):
|
36 |
+
output_base_dir_path = f'{paths_config.experiments_output_dir}/{paths_config.input_data_id}/{self.run_id}/{full_image_name}'
|
37 |
+
os.makedirs(output_base_dir_path, exist_ok=True)
|
38 |
+
|
39 |
+
self.concat_base_dir = f'{output_base_dir_path}/concat_images'
|
40 |
+
self.single_base_dir = f'{output_base_dir_path}/single_images'
|
41 |
+
|
42 |
+
os.makedirs(self.concat_base_dir, exist_ok=True)
|
43 |
+
os.makedirs(self.single_base_dir, exist_ok=True)
|
44 |
+
|
45 |
+
def get_image_latent_codes(self, image_name):
|
46 |
+
image_latents = []
|
47 |
+
for method in evaluation_config.evaluated_methods:
|
48 |
+
if method == 'SG2':
|
49 |
+
image_latents.append(torch.load(
|
50 |
+
f'{paths_config.embedding_base_dir}/{paths_config.input_data_id}/'
|
51 |
+
f'{paths_config.pti_results_keyword}/{image_name}/0.pt'))
|
52 |
+
else:
|
53 |
+
image_latents.append(torch.load(
|
54 |
+
f'{paths_config.embedding_base_dir}/{paths_config.input_data_id}/{method}/{image_name}/0.pt'))
|
55 |
+
new_inv_image_latent = torch.load(
|
56 |
+
f'{paths_config.embedding_base_dir}/{paths_config.input_data_id}/{paths_config.pti_results_keyword}/{image_name}/0.pt')
|
57 |
+
|
58 |
+
return image_latents, new_inv_image_latent
|
59 |
+
|
60 |
+
def save_interfacegan_edits(self, image_latents, new_inv_image_latent, interfacegan_factors, new_G, target_image):
|
61 |
+
new_w_inv_edits = self.latent_editor.get_single_interface_gan_edits(new_inv_image_latent,
|
62 |
+
interfacegan_factors)
|
63 |
+
|
64 |
+
inv_edits = []
|
65 |
+
for latent in image_latents:
|
66 |
+
inv_edits.append(self.latent_editor.get_single_interface_gan_edits(latent, interfacegan_factors))
|
67 |
+
|
68 |
+
for direction, edits in new_w_inv_edits.items():
|
69 |
+
for factor, edit_tensor in edits.items():
|
70 |
+
if self.save_concatenated_images:
|
71 |
+
save_concat_image(self.concat_base_dir, [edits[direction][factor] for edits in inv_edits],
|
72 |
+
new_w_inv_edits[direction][factor],
|
73 |
+
new_G,
|
74 |
+
self.experiment_creator.old_G,
|
75 |
+
f'{direction}_{factor}', target_image)
|
76 |
+
if self.save_single_images:
|
77 |
+
save_single_image(self.single_base_dir, new_w_inv_edits[direction][factor], new_G,
|
78 |
+
f'{direction}_{factor}')
|
79 |
+
|
80 |
+
def save_ganspace_edits(self, image_latents, new_inv_image_latent, factors, new_G, target_image):
|
81 |
+
new_w_inv_edits = self.latent_editor.get_single_ganspace_edits(new_inv_image_latent, factors)
|
82 |
+
inv_edits = []
|
83 |
+
for latent in image_latents:
|
84 |
+
inv_edits.append(self.latent_editor.get_single_ganspace_edits(latent, factors))
|
85 |
+
|
86 |
+
for idx in range(len(new_w_inv_edits)):
|
87 |
+
if self.save_concatenated_images:
|
88 |
+
save_concat_image(self.concat_base_dir, [edit[idx] for edit in inv_edits], new_w_inv_edits[idx],
|
89 |
+
new_G,
|
90 |
+
self.experiment_creator.old_G,
|
91 |
+
f'ganspace_{idx}', target_image)
|
92 |
+
if self.save_single_images:
|
93 |
+
save_single_image(self.single_base_dir, new_w_inv_edits[idx], new_G,
|
94 |
+
f'ganspace_{idx}')
|
95 |
+
|
96 |
+
def run_experiment(self, run_pt, create_other_latents, use_multi_id_training, use_wandb=False):
|
97 |
+
images_counter = 0
|
98 |
+
new_G = None
|
99 |
+
interfacegan_factors = [val / 2 for val in range(-6, 7) if val != 0]
|
100 |
+
ganspace_factors = range(-20, 25, 5)
|
101 |
+
self.experiment_creator.run_experiment(run_pt, create_other_latents, use_multi_id_training, use_wandb)
|
102 |
+
|
103 |
+
if use_multi_id_training:
|
104 |
+
new_G = load_tuned_G(self.run_id, paths_config.multi_id_model_type)
|
105 |
+
|
106 |
+
for idx, image_path in tqdm(enumerate(self.experiment_creator.images_paths),
|
107 |
+
total=len(self.experiment_creator.images_paths)):
|
108 |
+
|
109 |
+
if images_counter >= hyperparameters.max_images_to_invert:
|
110 |
+
break
|
111 |
+
|
112 |
+
image_name = image_path.split('.')[0].split('/')[-1]
|
113 |
+
target_image = Image.open(self.experiment_creator.target_paths[idx])
|
114 |
+
|
115 |
+
if not use_multi_id_training:
|
116 |
+
new_G = load_tuned_G(self.run_id, image_name)
|
117 |
+
|
118 |
+
image_latents, new_inv_image_latent = self.get_image_latent_codes(image_name)
|
119 |
+
|
120 |
+
self.create_output_dirs(image_name)
|
121 |
+
|
122 |
+
self.save_reconstruction_images(image_latents, new_inv_image_latent, new_G, target_image)
|
123 |
+
|
124 |
+
self.save_interfacegan_edits(image_latents, new_inv_image_latent, interfacegan_factors, new_G, target_image)
|
125 |
+
|
126 |
+
self.save_ganspace_edits(image_latents, new_inv_image_latent, ganspace_factors, new_G, target_image)
|
127 |
+
|
128 |
+
target_image.close()
|
129 |
+
torch.cuda.empty_cache()
|
130 |
+
images_counter += 1
|
131 |
+
|
132 |
+
|
133 |
+
def run_pti_and_full_edit(iid):
|
134 |
+
evaluation_config.evaluated_methods = ['SG2Plus', 'e4e', 'SG2']
|
135 |
+
edit_figure_creator = EditComparison(save_single_images=True, save_concatenated_images=True,
|
136 |
+
run_id=f'{paths_config.input_data_id}_pti_full_edit_{iid}')
|
137 |
+
edit_figure_creator.run_experiment(True, True, use_multi_id_training=False, use_wandb=False)
|
138 |
+
|
139 |
+
|
140 |
+
def pti_no_comparison(iid):
|
141 |
+
evaluation_config.evaluated_methods = []
|
142 |
+
edit_figure_creator = EditComparison(save_single_images=True, save_concatenated_images=True,
|
143 |
+
run_id=f'{paths_config.input_data_id}_pti_no_comparison_{iid}')
|
144 |
+
edit_figure_creator.run_experiment(True, False, use_multi_id_training=False, use_wandb=False)
|
145 |
+
|
146 |
+
|
147 |
+
def edits_for_existed_experiment(run_id):
|
148 |
+
evaluation_config.evaluated_methods = ['SG2Plus', 'e4e', 'SG2']
|
149 |
+
edit_figure_creator = EditComparison(save_single_images=True, save_concatenated_images=True,
|
150 |
+
run_id=run_id)
|
151 |
+
edit_figure_creator.run_experiment(False, True, use_multi_id_training=False, use_wandb=False)
|
152 |
+
|
153 |
+
|
154 |
+
if __name__ == '__main__':
|
155 |
+
iid = ''.join(choice(ascii_uppercase) for i in range(7))
|
156 |
+
pti_no_comparison(iid)
|
PTI/models/StyleCLIP/__init__.py
ADDED
File without changes
|
PTI/models/StyleCLIP/criteria/__init__.py
ADDED
File without changes
|
PTI/models/StyleCLIP/criteria/clip_loss.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import torch
|
3 |
+
import clip
|
4 |
+
|
5 |
+
|
6 |
+
class CLIPLoss(torch.nn.Module):
|
7 |
+
|
8 |
+
def __init__(self, opts):
|
9 |
+
super(CLIPLoss, self).__init__()
|
10 |
+
self.model, self.preprocess = clip.load("ViT-B/32", device="cuda")
|
11 |
+
self.upsample = torch.nn.Upsample(scale_factor=7)
|
12 |
+
self.avg_pool = torch.nn.AvgPool2d(kernel_size=opts.stylegan_size // 32)
|
13 |
+
|
14 |
+
def forward(self, image, text):
|
15 |
+
image = self.avg_pool(self.upsample(image))
|
16 |
+
similarity = 1 - self.model(image, text)[0] / 100
|
17 |
+
return similarity
|
PTI/models/StyleCLIP/criteria/id_loss.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
|
4 |
+
from models.facial_recognition.model_irse import Backbone
|
5 |
+
|
6 |
+
|
7 |
+
class IDLoss(nn.Module):
|
8 |
+
def __init__(self, opts):
|
9 |
+
super(IDLoss, self).__init__()
|
10 |
+
print('Loading ResNet ArcFace')
|
11 |
+
self.facenet = Backbone(input_size=112, num_layers=50, drop_ratio=0.6, mode='ir_se')
|
12 |
+
self.facenet.load_state_dict(torch.load(opts.ir_se50_weights))
|
13 |
+
self.pool = torch.nn.AdaptiveAvgPool2d((256, 256))
|
14 |
+
self.face_pool = torch.nn.AdaptiveAvgPool2d((112, 112))
|
15 |
+
self.facenet.eval()
|
16 |
+
self.opts = opts
|
17 |
+
|
18 |
+
def extract_feats(self, x):
|
19 |
+
if x.shape[2] != 256:
|
20 |
+
x = self.pool(x)
|
21 |
+
x = x[:, :, 35:223, 32:220] # Crop interesting region
|
22 |
+
x = self.face_pool(x)
|
23 |
+
x_feats = self.facenet(x)
|
24 |
+
return x_feats
|
25 |
+
|
26 |
+
def forward(self, y_hat, y):
|
27 |
+
n_samples = y.shape[0]
|
28 |
+
y_feats = self.extract_feats(y) # Otherwise use the feature from there
|
29 |
+
y_hat_feats = self.extract_feats(y_hat)
|
30 |
+
y_feats = y_feats.detach()
|
31 |
+
loss = 0
|
32 |
+
sim_improvement = 0
|
33 |
+
count = 0
|
34 |
+
for i in range(n_samples):
|
35 |
+
diff_target = y_hat_feats[i].dot(y_feats[i])
|
36 |
+
loss += 1 - diff_target
|
37 |
+
count += 1
|
38 |
+
|
39 |
+
return loss / count, sim_improvement / count
|
PTI/models/StyleCLIP/global_directions/GUI.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
from tkinter import Tk,Frame ,Label,Button,messagebox,Canvas,Text,Scale
|
4 |
+
from tkinter import HORIZONTAL
|
5 |
+
|
6 |
+
class View():
|
7 |
+
def __init__(self,master):
|
8 |
+
|
9 |
+
self.width=600
|
10 |
+
self.height=600
|
11 |
+
|
12 |
+
|
13 |
+
self.root=master
|
14 |
+
self.root.geometry("600x600")
|
15 |
+
|
16 |
+
self.left_frame=Frame(self.root,width=600)
|
17 |
+
self.left_frame.pack_propagate(0)
|
18 |
+
self.left_frame.pack(fill='both', side='left', expand='True')
|
19 |
+
|
20 |
+
self.retrieval_frame=Frame(self.root,bg='snow3')
|
21 |
+
self.retrieval_frame.pack_propagate(0)
|
22 |
+
self.retrieval_frame.pack(fill='both', side='right', expand='True')
|
23 |
+
|
24 |
+
self.bg_frame=Frame(self.left_frame,bg='snow3',height=600,width=600)
|
25 |
+
self.bg_frame.pack_propagate(0)
|
26 |
+
self.bg_frame.pack(fill='both', side='top', expand='True')
|
27 |
+
|
28 |
+
self.command_frame=Frame(self.left_frame,bg='snow3')
|
29 |
+
self.command_frame.pack_propagate(0)
|
30 |
+
self.command_frame.pack(fill='both', side='bottom', expand='True')
|
31 |
+
# self.command_frame.grid(row=1, column=0,padx=0, pady=0)
|
32 |
+
|
33 |
+
self.bg=Canvas(self.bg_frame,width=self.width,height=self.height, bg='gray')
|
34 |
+
self.bg.place(relx=0.5, rely=0.5, anchor='center')
|
35 |
+
|
36 |
+
self.mani=Canvas(self.retrieval_frame,width=1024,height=1024, bg='gray')
|
37 |
+
self.mani.grid(row=0, column=0,padx=0, pady=42)
|
38 |
+
|
39 |
+
self.SetCommand()
|
40 |
+
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
+
def run(self):
|
45 |
+
self.root.mainloop()
|
46 |
+
|
47 |
+
def helloCallBack(self):
|
48 |
+
category=self.set_category.get()
|
49 |
+
messagebox.showinfo( "Hello Python",category)
|
50 |
+
|
51 |
+
def SetCommand(self):
|
52 |
+
|
53 |
+
tmp = Label(self.command_frame, text="neutral", width=10 ,bg='snow3')
|
54 |
+
tmp.grid(row=1, column=0,padx=10, pady=10)
|
55 |
+
|
56 |
+
tmp = Label(self.command_frame, text="a photo of a", width=10 ,bg='snow3')
|
57 |
+
tmp.grid(row=1, column=1,padx=10, pady=10)
|
58 |
+
|
59 |
+
self.neutral = Text ( self.command_frame, height=2, width=30)
|
60 |
+
self.neutral.grid(row=1, column=2,padx=10, pady=10)
|
61 |
+
|
62 |
+
|
63 |
+
tmp = Label(self.command_frame, text="target", width=10 ,bg='snow3')
|
64 |
+
tmp.grid(row=2, column=0,padx=10, pady=10)
|
65 |
+
|
66 |
+
tmp = Label(self.command_frame, text="a photo of a", width=10 ,bg='snow3')
|
67 |
+
tmp.grid(row=2, column=1,padx=10, pady=10)
|
68 |
+
|
69 |
+
self.target = Text ( self.command_frame, height=2, width=30)
|
70 |
+
self.target.grid(row=2, column=2,padx=10, pady=10)
|
71 |
+
|
72 |
+
tmp = Label(self.command_frame, text="strength", width=10 ,bg='snow3')
|
73 |
+
tmp.grid(row=3, column=0,padx=10, pady=10)
|
74 |
+
|
75 |
+
self.alpha = Scale(self.command_frame, from_=-15, to=25, orient=HORIZONTAL,bg='snow3', length=250,resolution=0.01)
|
76 |
+
self.alpha.grid(row=3, column=2,padx=10, pady=10)
|
77 |
+
|
78 |
+
|
79 |
+
tmp = Label(self.command_frame, text="disentangle", width=10 ,bg='snow3')
|
80 |
+
tmp.grid(row=4, column=0,padx=10, pady=10)
|
81 |
+
|
82 |
+
self.beta = Scale(self.command_frame, from_=0.08, to=0.4, orient=HORIZONTAL,bg='snow3', length=250,resolution=0.001)
|
83 |
+
self.beta.grid(row=4, column=2,padx=10, pady=10)
|
84 |
+
|
85 |
+
self.reset = Button(self.command_frame, text='Reset')
|
86 |
+
self.reset.grid(row=5, column=1,padx=10, pady=10)
|
87 |
+
|
88 |
+
|
89 |
+
self.set_init = Button(self.command_frame, text='Accept')
|
90 |
+
self.set_init.grid(row=5, column=2,padx=10, pady=10)
|
91 |
+
|
92 |
+
#%%
|
93 |
+
if __name__ == "__main__":
|
94 |
+
master=Tk()
|
95 |
+
self=View(master)
|
96 |
+
self.run()
|
97 |
+
|
98 |
+
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
|
103 |
+
|
PTI/models/StyleCLIP/global_directions/GenerateImg.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import os
|
3 |
+
import numpy as np
|
4 |
+
import argparse
|
5 |
+
from manipulate import Manipulator
|
6 |
+
|
7 |
+
from PIL import Image
|
8 |
+
#%%
|
9 |
+
|
10 |
+
if __name__ == "__main__":
|
11 |
+
parser = argparse.ArgumentParser(description='Process some integers.')
|
12 |
+
|
13 |
+
parser.add_argument('--dataset_name',type=str,default='ffhq',
|
14 |
+
help='name of dataset, for example, ffhq')
|
15 |
+
|
16 |
+
args = parser.parse_args()
|
17 |
+
dataset_name=args.dataset_name
|
18 |
+
|
19 |
+
if not os.path.isdir('./data/'+dataset_name):
|
20 |
+
os.system('mkdir ./data/'+dataset_name)
|
21 |
+
#%%
|
22 |
+
M=Manipulator(dataset_name=dataset_name)
|
23 |
+
np.set_printoptions(suppress=True)
|
24 |
+
print(M.dataset_name)
|
25 |
+
#%%
|
26 |
+
|
27 |
+
M.img_index=0
|
28 |
+
M.num_images=50
|
29 |
+
M.alpha=[0]
|
30 |
+
M.step=1
|
31 |
+
lindex,bname=0,0
|
32 |
+
|
33 |
+
M.manipulate_layers=[lindex]
|
34 |
+
codes,out=M.EditOneC(bname)
|
35 |
+
#%%
|
36 |
+
|
37 |
+
for i in range(len(out)):
|
38 |
+
img=out[i,0]
|
39 |
+
img=Image.fromarray(img)
|
40 |
+
img.save('./data/'+dataset_name+'/'+str(i)+'.jpg')
|
41 |
+
#%%
|
42 |
+
w=np.load('./npy/'+dataset_name+'/W.npy')
|
43 |
+
|
44 |
+
tmp=w[:M.num_images]
|
45 |
+
tmp=tmp[:,None,:]
|
46 |
+
tmp=np.tile(tmp,(1,M.Gs.components.synthesis.input_shape[1],1))
|
47 |
+
|
48 |
+
np.save('./data/'+dataset_name+'/w_plus.npy',tmp)
|
49 |
+
|
50 |
+
|
PTI/models/StyleCLIP/global_directions/GetCode.py
ADDED
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
|
4 |
+
import os
|
5 |
+
import pickle
|
6 |
+
import numpy as np
|
7 |
+
from dnnlib import tflib
|
8 |
+
import tensorflow as tf
|
9 |
+
|
10 |
+
import argparse
|
11 |
+
|
12 |
+
def LoadModel(dataset_name):
|
13 |
+
# Initialize TensorFlow.
|
14 |
+
tflib.init_tf()
|
15 |
+
model_path='./model/'
|
16 |
+
model_name=dataset_name+'.pkl'
|
17 |
+
|
18 |
+
tmp=os.path.join(model_path,model_name)
|
19 |
+
with open(tmp, 'rb') as f:
|
20 |
+
_, _, Gs = pickle.load(f)
|
21 |
+
return Gs
|
22 |
+
|
23 |
+
def lerp(a,b,t):
|
24 |
+
return a + (b - a) * t
|
25 |
+
|
26 |
+
#stylegan-ada
|
27 |
+
def SelectName(layer_name,suffix):
|
28 |
+
if suffix==None:
|
29 |
+
tmp1='add:0' in layer_name
|
30 |
+
tmp2='shape=(?,' in layer_name
|
31 |
+
tmp4='G_synthesis_1' in layer_name
|
32 |
+
tmp= tmp1 and tmp2 and tmp4
|
33 |
+
else:
|
34 |
+
tmp1=('/Conv0_up'+suffix) in layer_name
|
35 |
+
tmp2=('/Conv1'+suffix) in layer_name
|
36 |
+
tmp3=('4x4/Conv'+suffix) in layer_name
|
37 |
+
tmp4='G_synthesis_1' in layer_name
|
38 |
+
tmp5=('/ToRGB'+suffix) in layer_name
|
39 |
+
tmp= (tmp1 or tmp2 or tmp3 or tmp5) and tmp4
|
40 |
+
return tmp
|
41 |
+
|
42 |
+
|
43 |
+
def GetSNames(suffix):
|
44 |
+
#get style tensor name
|
45 |
+
with tf.Session() as sess:
|
46 |
+
op = sess.graph.get_operations()
|
47 |
+
layers=[m.values() for m in op]
|
48 |
+
|
49 |
+
|
50 |
+
select_layers=[]
|
51 |
+
for layer in layers:
|
52 |
+
layer_name=str(layer)
|
53 |
+
if SelectName(layer_name,suffix):
|
54 |
+
select_layers.append(layer[0])
|
55 |
+
return select_layers
|
56 |
+
|
57 |
+
def SelectName2(layer_name):
|
58 |
+
tmp1='mod_bias' in layer_name
|
59 |
+
tmp2='mod_weight' in layer_name
|
60 |
+
tmp3='ToRGB' in layer_name
|
61 |
+
|
62 |
+
tmp= (tmp1 or tmp2) and (not tmp3)
|
63 |
+
return tmp
|
64 |
+
|
65 |
+
def GetKName(Gs):
|
66 |
+
|
67 |
+
layers=[var for name, var in Gs.components.synthesis.vars.items()]
|
68 |
+
|
69 |
+
select_layers=[]
|
70 |
+
for layer in layers:
|
71 |
+
layer_name=str(layer)
|
72 |
+
if SelectName2(layer_name):
|
73 |
+
select_layers.append(layer)
|
74 |
+
return select_layers
|
75 |
+
|
76 |
+
def GetCode(Gs,random_state,num_img,num_once,dataset_name):
|
77 |
+
rnd = np.random.RandomState(random_state) #5
|
78 |
+
|
79 |
+
truncation_psi=0.7
|
80 |
+
truncation_cutoff=8
|
81 |
+
|
82 |
+
dlatent_avg=Gs.get_var('dlatent_avg')
|
83 |
+
|
84 |
+
dlatents=np.zeros((num_img,512),dtype='float32')
|
85 |
+
for i in range(int(num_img/num_once)):
|
86 |
+
src_latents = rnd.randn(num_once, Gs.input_shape[1])
|
87 |
+
src_dlatents = Gs.components.mapping.run(src_latents, None) # [seed, layer, component]
|
88 |
+
|
89 |
+
# Apply truncation trick.
|
90 |
+
if truncation_psi is not None and truncation_cutoff is not None:
|
91 |
+
layer_idx = np.arange(src_dlatents.shape[1])[np.newaxis, :, np.newaxis]
|
92 |
+
ones = np.ones(layer_idx.shape, dtype=np.float32)
|
93 |
+
coefs = np.where(layer_idx < truncation_cutoff, truncation_psi * ones, ones)
|
94 |
+
src_dlatents_np=lerp(dlatent_avg, src_dlatents, coefs)
|
95 |
+
src_dlatents=src_dlatents_np[:,0,:].astype('float32')
|
96 |
+
dlatents[(i*num_once):((i+1)*num_once),:]=src_dlatents
|
97 |
+
print('get all z and w')
|
98 |
+
|
99 |
+
tmp='./npy/'+dataset_name+'/W'
|
100 |
+
np.save(tmp,dlatents)
|
101 |
+
|
102 |
+
|
103 |
+
def GetImg(Gs,num_img,num_once,dataset_name,save_name='images'):
|
104 |
+
print('Generate Image')
|
105 |
+
tmp='./npy/'+dataset_name+'/W.npy'
|
106 |
+
dlatents=np.load(tmp)
|
107 |
+
fmt = dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True)
|
108 |
+
|
109 |
+
all_images=[]
|
110 |
+
for i in range(int(num_img/num_once)):
|
111 |
+
print(i)
|
112 |
+
images=[]
|
113 |
+
for k in range(num_once):
|
114 |
+
tmp=dlatents[i*num_once+k]
|
115 |
+
tmp=tmp[None,None,:]
|
116 |
+
tmp=np.tile(tmp,(1,Gs.components.synthesis.input_shape[1],1))
|
117 |
+
image2= Gs.components.synthesis.run(tmp, randomize_noise=False, output_transform=fmt)
|
118 |
+
images.append(image2)
|
119 |
+
|
120 |
+
images=np.concatenate(images)
|
121 |
+
|
122 |
+
all_images.append(images)
|
123 |
+
|
124 |
+
all_images=np.concatenate(all_images)
|
125 |
+
|
126 |
+
tmp='./npy/'+dataset_name+'/'+save_name
|
127 |
+
np.save(tmp,all_images)
|
128 |
+
|
129 |
+
def GetS(dataset_name,num_img):
|
130 |
+
print('Generate S')
|
131 |
+
tmp='./npy/'+dataset_name+'/W.npy'
|
132 |
+
dlatents=np.load(tmp)[:num_img]
|
133 |
+
|
134 |
+
with tf.Session() as sess:
|
135 |
+
init = tf.global_variables_initializer()
|
136 |
+
sess.run(init)
|
137 |
+
|
138 |
+
Gs=LoadModel(dataset_name)
|
139 |
+
Gs.print_layers() #for ada
|
140 |
+
select_layers1=GetSNames(suffix=None) #None,'/mul_1:0','/mod_weight/read:0','/MatMul:0'
|
141 |
+
dlatents=dlatents[:,None,:]
|
142 |
+
dlatents=np.tile(dlatents,(1,Gs.components.synthesis.input_shape[1],1))
|
143 |
+
|
144 |
+
all_s = sess.run(
|
145 |
+
select_layers1,
|
146 |
+
feed_dict={'G_synthesis_1/dlatents_in:0': dlatents})
|
147 |
+
|
148 |
+
layer_names=[layer.name for layer in select_layers1]
|
149 |
+
save_tmp=[layer_names,all_s]
|
150 |
+
return save_tmp
|
151 |
+
|
152 |
+
|
153 |
+
|
154 |
+
|
155 |
+
def convert_images_to_uint8(images, drange=[-1,1], nchw_to_nhwc=False):
|
156 |
+
"""Convert a minibatch of images from float32 to uint8 with configurable dynamic range.
|
157 |
+
Can be used as an output transformation for Network.run().
|
158 |
+
"""
|
159 |
+
if nchw_to_nhwc:
|
160 |
+
images = np.transpose(images, [0, 2, 3, 1])
|
161 |
+
|
162 |
+
scale = 255 / (drange[1] - drange[0])
|
163 |
+
images = images * scale + (0.5 - drange[0] * scale)
|
164 |
+
|
165 |
+
np.clip(images, 0, 255, out=images)
|
166 |
+
images=images.astype('uint8')
|
167 |
+
return images
|
168 |
+
|
169 |
+
|
170 |
+
def GetCodeMS(dlatents):
|
171 |
+
m=[]
|
172 |
+
std=[]
|
173 |
+
for i in range(len(dlatents)):
|
174 |
+
tmp= dlatents[i]
|
175 |
+
tmp_mean=tmp.mean(axis=0)
|
176 |
+
tmp_std=tmp.std(axis=0)
|
177 |
+
m.append(tmp_mean)
|
178 |
+
std.append(tmp_std)
|
179 |
+
return m,std
|
180 |
+
|
181 |
+
|
182 |
+
|
183 |
+
#%%
|
184 |
+
if __name__ == "__main__":
|
185 |
+
|
186 |
+
|
187 |
+
parser = argparse.ArgumentParser(description='Process some integers.')
|
188 |
+
|
189 |
+
parser.add_argument('--dataset_name',type=str,default='ffhq',
|
190 |
+
help='name of dataset, for example, ffhq')
|
191 |
+
parser.add_argument('--code_type',choices=['w','s','s_mean_std'],default='w')
|
192 |
+
|
193 |
+
args = parser.parse_args()
|
194 |
+
random_state=5
|
195 |
+
num_img=100_000
|
196 |
+
num_once=1_000
|
197 |
+
dataset_name=args.dataset_name
|
198 |
+
|
199 |
+
if not os.path.isfile('./model/'+dataset_name+'.pkl'):
|
200 |
+
url='https://nvlabs-fi-cdn.nvidia.com/stylegan2/networks/'
|
201 |
+
name='stylegan2-'+dataset_name+'-config-f.pkl'
|
202 |
+
os.system('wget ' +url+name + ' -P ./model/')
|
203 |
+
os.system('mv ./model/'+name+' ./model/'+dataset_name+'.pkl')
|
204 |
+
|
205 |
+
if not os.path.isdir('./npy/'+dataset_name):
|
206 |
+
os.system('mkdir ./npy/'+dataset_name)
|
207 |
+
|
208 |
+
if args.code_type=='w':
|
209 |
+
Gs=LoadModel(dataset_name=dataset_name)
|
210 |
+
GetCode(Gs,random_state,num_img,num_once,dataset_name)
|
211 |
+
# GetImg(Gs,num_img=num_img,num_once=num_once,dataset_name=dataset_name,save_name='images_100K') #no need
|
212 |
+
elif args.code_type=='s':
|
213 |
+
save_name='S'
|
214 |
+
save_tmp=GetS(dataset_name,num_img=2_000)
|
215 |
+
tmp='./npy/'+dataset_name+'/'+save_name
|
216 |
+
with open(tmp, "wb") as fp:
|
217 |
+
pickle.dump(save_tmp, fp)
|
218 |
+
|
219 |
+
elif args.code_type=='s_mean_std':
|
220 |
+
save_tmp=GetS(dataset_name,num_img=num_img)
|
221 |
+
dlatents=save_tmp[1]
|
222 |
+
m,std=GetCodeMS(dlatents)
|
223 |
+
save_tmp=[m,std]
|
224 |
+
save_name='S_mean_std'
|
225 |
+
tmp='./npy/'+dataset_name+'/'+save_name
|
226 |
+
with open(tmp, "wb") as fp:
|
227 |
+
pickle.dump(save_tmp, fp)
|
228 |
+
|
229 |
+
|
230 |
+
|
231 |
+
|
232 |
+
|
PTI/models/StyleCLIP/global_directions/GetGUIData.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import os
|
3 |
+
import numpy as np
|
4 |
+
import argparse
|
5 |
+
from manipulate import Manipulator
|
6 |
+
import torch
|
7 |
+
from PIL import Image
|
8 |
+
#%%
|
9 |
+
|
10 |
+
if __name__ == "__main__":
|
11 |
+
parser = argparse.ArgumentParser(description='Process some integers.')
|
12 |
+
|
13 |
+
parser.add_argument('--dataset_name',type=str,default='ffhq',
|
14 |
+
help='name of dataset, for example, ffhq')
|
15 |
+
|
16 |
+
parser.add_argument('--real', action='store_true')
|
17 |
+
|
18 |
+
args = parser.parse_args()
|
19 |
+
dataset_name=args.dataset_name
|
20 |
+
|
21 |
+
if not os.path.isdir('./data/'+dataset_name):
|
22 |
+
os.system('mkdir ./data/'+dataset_name)
|
23 |
+
#%%
|
24 |
+
M=Manipulator(dataset_name=dataset_name)
|
25 |
+
np.set_printoptions(suppress=True)
|
26 |
+
print(M.dataset_name)
|
27 |
+
#%%
|
28 |
+
#remove all .jpg
|
29 |
+
names=os.listdir('./data/'+dataset_name+'/')
|
30 |
+
for name in names:
|
31 |
+
if '.jpg' in name:
|
32 |
+
os.system('rm ./data/'+dataset_name+'/'+name)
|
33 |
+
|
34 |
+
|
35 |
+
#%%
|
36 |
+
if args.real:
|
37 |
+
latents=torch.load('./data/'+dataset_name+'/latents.pt')
|
38 |
+
w_plus=latents.cpu().detach().numpy()
|
39 |
+
else:
|
40 |
+
w=np.load('./npy/'+dataset_name+'/W.npy')
|
41 |
+
tmp=w[:50] #only use 50 images
|
42 |
+
tmp=tmp[:,None,:]
|
43 |
+
w_plus=np.tile(tmp,(1,M.Gs.components.synthesis.input_shape[1],1))
|
44 |
+
np.save('./data/'+dataset_name+'/w_plus.npy',w_plus)
|
45 |
+
|
46 |
+
#%%
|
47 |
+
tmp=M.W2S(w_plus)
|
48 |
+
M.dlatents=tmp
|
49 |
+
|
50 |
+
M.img_index=0
|
51 |
+
M.num_images=len(w_plus)
|
52 |
+
M.alpha=[0]
|
53 |
+
M.step=1
|
54 |
+
lindex,bname=0,0
|
55 |
+
|
56 |
+
M.manipulate_layers=[lindex]
|
57 |
+
codes,out=M.EditOneC(bname)
|
58 |
+
#%%
|
59 |
+
|
60 |
+
for i in range(len(out)):
|
61 |
+
img=out[i,0]
|
62 |
+
img=Image.fromarray(img)
|
63 |
+
img.save('./data/'+dataset_name+'/'+str(i)+'.jpg')
|
64 |
+
#%%
|
65 |
+
|
66 |
+
|
67 |
+
|
PTI/models/StyleCLIP/global_directions/Inference.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
from manipulate import Manipulator
|
4 |
+
import tensorflow as tf
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
import clip
|
8 |
+
from MapTS import GetBoundary,GetDt
|
9 |
+
|
10 |
+
class StyleCLIP():
|
11 |
+
|
12 |
+
def __init__(self,dataset_name='ffhq'):
|
13 |
+
print('load clip')
|
14 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
+
self.model, preprocess = clip.load("ViT-B/32", device=device)
|
16 |
+
self.LoadData(dataset_name)
|
17 |
+
|
18 |
+
def LoadData(self, dataset_name):
|
19 |
+
tf.keras.backend.clear_session()
|
20 |
+
M=Manipulator(dataset_name=dataset_name)
|
21 |
+
np.set_printoptions(suppress=True)
|
22 |
+
fs3=np.load('./npy/'+dataset_name+'/fs3.npy')
|
23 |
+
|
24 |
+
self.M=M
|
25 |
+
self.fs3=fs3
|
26 |
+
|
27 |
+
w_plus=np.load('./data/'+dataset_name+'/w_plus.npy')
|
28 |
+
self.M.dlatents=M.W2S(w_plus)
|
29 |
+
|
30 |
+
if dataset_name=='ffhq':
|
31 |
+
self.c_threshold=20
|
32 |
+
else:
|
33 |
+
self.c_threshold=100
|
34 |
+
self.SetInitP()
|
35 |
+
|
36 |
+
def SetInitP(self):
|
37 |
+
self.M.alpha=[3]
|
38 |
+
self.M.num_images=1
|
39 |
+
|
40 |
+
self.target=''
|
41 |
+
self.neutral=''
|
42 |
+
self.GetDt2()
|
43 |
+
img_index=0
|
44 |
+
self.M.dlatent_tmp=[tmp[img_index:(img_index+1)] for tmp in self.M.dlatents]
|
45 |
+
|
46 |
+
|
47 |
+
def GetDt2(self):
|
48 |
+
classnames=[self.target,self.neutral]
|
49 |
+
dt=GetDt(classnames,self.model)
|
50 |
+
|
51 |
+
self.dt=dt
|
52 |
+
num_cs=[]
|
53 |
+
betas=np.arange(0.1,0.3,0.01)
|
54 |
+
for i in range(len(betas)):
|
55 |
+
boundary_tmp2,num_c=GetBoundary(self.fs3,self.dt,self.M,threshold=betas[i])
|
56 |
+
print(betas[i])
|
57 |
+
num_cs.append(num_c)
|
58 |
+
|
59 |
+
num_cs=np.array(num_cs)
|
60 |
+
select=num_cs>self.c_threshold
|
61 |
+
|
62 |
+
if sum(select)==0:
|
63 |
+
self.beta=0.1
|
64 |
+
else:
|
65 |
+
self.beta=betas[select][-1]
|
66 |
+
|
67 |
+
|
68 |
+
def GetCode(self):
|
69 |
+
boundary_tmp2,num_c=GetBoundary(self.fs3,self.dt,self.M,threshold=self.beta)
|
70 |
+
codes=self.M.MSCode(self.M.dlatent_tmp,boundary_tmp2)
|
71 |
+
return codes
|
72 |
+
|
73 |
+
def GetImg(self):
|
74 |
+
|
75 |
+
codes=self.GetCode()
|
76 |
+
out=self.M.GenerateImg(codes)
|
77 |
+
img=out[0,0]
|
78 |
+
return img
|
79 |
+
|
80 |
+
|
81 |
+
|
82 |
+
|
83 |
+
#%%
|
84 |
+
if __name__ == "__main__":
|
85 |
+
style_clip=StyleCLIP()
|
86 |
+
self=style_clip
|
87 |
+
|
88 |
+
|
89 |
+
|
90 |
+
|
91 |
+
|
92 |
+
|
93 |
+
|
94 |
+
|
95 |
+
|
96 |
+
|
97 |
+
|
98 |
+
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
|
103 |
+
|
104 |
+
|
105 |
+
|
106 |
+
|
PTI/models/StyleCLIP/global_directions/MapTS.py
ADDED
@@ -0,0 +1,394 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
"""
|
4 |
+
Created on Thu Feb 4 17:36:31 2021
|
5 |
+
|
6 |
+
@author: wuzongze
|
7 |
+
"""
|
8 |
+
|
9 |
+
import os
|
10 |
+
#os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
11 |
+
#os.environ["CUDA_VISIBLE_DEVICES"] = "1" #(or "1" or "2")
|
12 |
+
|
13 |
+
import sys
|
14 |
+
|
15 |
+
#sys.path=['', '/usr/local/tensorflow/avx-avx2-gpu/1.14.0/python3.7/site-packages', '/usr/local/matlab/2018b/lib/python3.7/site-packages', '/cs/labs/danix/wuzongze/pythonV/venv3.7/lib/python37.zip', '/cs/labs/danix/wuzongze/pythonV/venv3.7/lib/python3.7', '/cs/labs/danix/wuzongze/pythonV/venv3.7/lib/python3.7/lib-dynload', '/usr/lib/python3.7', '/cs/labs/danix/wuzongze/pythonV/venv3.7/lib/python3.7/site-packages', '/cs/labs/danix/wuzongze/pythonV/venv3.7/lib/python3.7/site-packages/copkmeans-1.5-py3.7.egg', '/cs/labs/danix/wuzongze/pythonV/venv3.7/lib/python3.7/site-packages/spherecluster-0.1.7-py3.7.egg', '/usr/lib/python3/dist-packages', '/usr/local/lib/python3.7/dist-packages', '/usr/lib/python3/dist-packages/IPython/extensions']
|
16 |
+
|
17 |
+
import tensorflow as tf
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
import torch
|
21 |
+
import clip
|
22 |
+
from PIL import Image
|
23 |
+
import pickle
|
24 |
+
import copy
|
25 |
+
import matplotlib.pyplot as plt
|
26 |
+
|
27 |
+
def GetAlign(out,dt,model,preprocess):
|
28 |
+
imgs=out
|
29 |
+
imgs1=imgs.reshape([-1]+list(imgs.shape[2:]))
|
30 |
+
|
31 |
+
tmp=[]
|
32 |
+
for i in range(len(imgs1)):
|
33 |
+
|
34 |
+
img=Image.fromarray(imgs1[i])
|
35 |
+
image = preprocess(img).unsqueeze(0).to(device)
|
36 |
+
tmp.append(image)
|
37 |
+
|
38 |
+
image=torch.cat(tmp)
|
39 |
+
|
40 |
+
with torch.no_grad():
|
41 |
+
image_features = model.encode_image(image)
|
42 |
+
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
|
43 |
+
|
44 |
+
image_features1=image_features.cpu().numpy()
|
45 |
+
|
46 |
+
image_features1=image_features1.reshape(list(imgs.shape[:2])+[512])
|
47 |
+
|
48 |
+
fd=image_features1[:,1:,:]-image_features1[:,:-1,:]
|
49 |
+
|
50 |
+
fd1=fd.reshape([-1,512])
|
51 |
+
fd2=fd1/np.linalg.norm(fd1,axis=1)[:,None]
|
52 |
+
|
53 |
+
tmp=np.dot(fd2,dt)
|
54 |
+
m=tmp.mean()
|
55 |
+
acc=np.sum(tmp>0)/len(tmp)
|
56 |
+
print(m,acc)
|
57 |
+
return m,acc
|
58 |
+
|
59 |
+
|
60 |
+
def SplitS(ds_p,M,if_std):
|
61 |
+
all_ds=[]
|
62 |
+
start=0
|
63 |
+
for i in M.mindexs:
|
64 |
+
tmp=M.dlatents[i].shape[1]
|
65 |
+
end=start+tmp
|
66 |
+
tmp=ds_p[start:end]
|
67 |
+
# tmp=tmp*M.code_std[i]
|
68 |
+
|
69 |
+
all_ds.append(tmp)
|
70 |
+
start=end
|
71 |
+
|
72 |
+
all_ds2=[]
|
73 |
+
tmp_index=0
|
74 |
+
for i in range(len(M.s_names)):
|
75 |
+
if (not 'RGB' in M.s_names[i]) and (not len(all_ds[tmp_index])==0):
|
76 |
+
|
77 |
+
# tmp=np.abs(all_ds[tmp_index]/M.code_std[i])
|
78 |
+
# print(i,tmp.mean())
|
79 |
+
# tmp=np.dot(M.latent_codes[i],all_ds[tmp_index])
|
80 |
+
# print(tmp)
|
81 |
+
if if_std:
|
82 |
+
tmp=all_ds[tmp_index]*M.code_std[i]
|
83 |
+
else:
|
84 |
+
tmp=all_ds[tmp_index]
|
85 |
+
|
86 |
+
all_ds2.append(tmp)
|
87 |
+
tmp_index+=1
|
88 |
+
else:
|
89 |
+
tmp=np.zeros(len(M.dlatents[i][0]))
|
90 |
+
all_ds2.append(tmp)
|
91 |
+
return all_ds2
|
92 |
+
|
93 |
+
|
94 |
+
imagenet_templates = [
|
95 |
+
'a bad photo of a {}.',
|
96 |
+
# 'a photo of many {}.',
|
97 |
+
'a sculpture of a {}.',
|
98 |
+
'a photo of the hard to see {}.',
|
99 |
+
'a low resolution photo of the {}.',
|
100 |
+
'a rendering of a {}.',
|
101 |
+
'graffiti of a {}.',
|
102 |
+
'a bad photo of the {}.',
|
103 |
+
'a cropped photo of the {}.',
|
104 |
+
'a tattoo of a {}.',
|
105 |
+
'the embroidered {}.',
|
106 |
+
'a photo of a hard to see {}.',
|
107 |
+
'a bright photo of a {}.',
|
108 |
+
'a photo of a clean {}.',
|
109 |
+
'a photo of a dirty {}.',
|
110 |
+
'a dark photo of the {}.',
|
111 |
+
'a drawing of a {}.',
|
112 |
+
'a photo of my {}.',
|
113 |
+
'the plastic {}.',
|
114 |
+
'a photo of the cool {}.',
|
115 |
+
'a close-up photo of a {}.',
|
116 |
+
'a black and white photo of the {}.',
|
117 |
+
'a painting of the {}.',
|
118 |
+
'a painting of a {}.',
|
119 |
+
'a pixelated photo of the {}.',
|
120 |
+
'a sculpture of the {}.',
|
121 |
+
'a bright photo of the {}.',
|
122 |
+
'a cropped photo of a {}.',
|
123 |
+
'a plastic {}.',
|
124 |
+
'a photo of the dirty {}.',
|
125 |
+
'a jpeg corrupted photo of a {}.',
|
126 |
+
'a blurry photo of the {}.',
|
127 |
+
'a photo of the {}.',
|
128 |
+
'a good photo of the {}.',
|
129 |
+
'a rendering of the {}.',
|
130 |
+
'a {} in a video game.',
|
131 |
+
'a photo of one {}.',
|
132 |
+
'a doodle of a {}.',
|
133 |
+
'a close-up photo of the {}.',
|
134 |
+
'a photo of a {}.',
|
135 |
+
'the origami {}.',
|
136 |
+
'the {} in a video game.',
|
137 |
+
'a sketch of a {}.',
|
138 |
+
'a doodle of the {}.',
|
139 |
+
'a origami {}.',
|
140 |
+
'a low resolution photo of a {}.',
|
141 |
+
'the toy {}.',
|
142 |
+
'a rendition of the {}.',
|
143 |
+
'a photo of the clean {}.',
|
144 |
+
'a photo of a large {}.',
|
145 |
+
'a rendition of a {}.',
|
146 |
+
'a photo of a nice {}.',
|
147 |
+
'a photo of a weird {}.',
|
148 |
+
'a blurry photo of a {}.',
|
149 |
+
'a cartoon {}.',
|
150 |
+
'art of a {}.',
|
151 |
+
'a sketch of the {}.',
|
152 |
+
'a embroidered {}.',
|
153 |
+
'a pixelated photo of a {}.',
|
154 |
+
'itap of the {}.',
|
155 |
+
'a jpeg corrupted photo of the {}.',
|
156 |
+
'a good photo of a {}.',
|
157 |
+
'a plushie {}.',
|
158 |
+
'a photo of the nice {}.',
|
159 |
+
'a photo of the small {}.',
|
160 |
+
'a photo of the weird {}.',
|
161 |
+
'the cartoon {}.',
|
162 |
+
'art of the {}.',
|
163 |
+
'a drawing of the {}.',
|
164 |
+
'a photo of the large {}.',
|
165 |
+
'a black and white photo of a {}.',
|
166 |
+
'the plushie {}.',
|
167 |
+
'a dark photo of a {}.',
|
168 |
+
'itap of a {}.',
|
169 |
+
'graffiti of the {}.',
|
170 |
+
'a toy {}.',
|
171 |
+
'itap of my {}.',
|
172 |
+
'a photo of a cool {}.',
|
173 |
+
'a photo of a small {}.',
|
174 |
+
'a tattoo of the {}.',
|
175 |
+
]
|
176 |
+
|
177 |
+
|
178 |
+
def zeroshot_classifier(classnames, templates,model):
|
179 |
+
with torch.no_grad():
|
180 |
+
zeroshot_weights = []
|
181 |
+
for classname in classnames:
|
182 |
+
texts = [template.format(classname) for template in templates] #format with class
|
183 |
+
texts = clip.tokenize(texts).cuda() #tokenize
|
184 |
+
class_embeddings = model.encode_text(texts) #embed with text encoder
|
185 |
+
class_embeddings /= class_embeddings.norm(dim=-1, keepdim=True)
|
186 |
+
class_embedding = class_embeddings.mean(dim=0)
|
187 |
+
class_embedding /= class_embedding.norm()
|
188 |
+
zeroshot_weights.append(class_embedding)
|
189 |
+
zeroshot_weights = torch.stack(zeroshot_weights, dim=1).cuda()
|
190 |
+
return zeroshot_weights
|
191 |
+
|
192 |
+
|
193 |
+
def GetDt(classnames,model):
|
194 |
+
text_features=zeroshot_classifier(classnames, imagenet_templates,model).t()
|
195 |
+
|
196 |
+
dt=text_features[0]-text_features[1]
|
197 |
+
dt=dt.cpu().numpy()
|
198 |
+
|
199 |
+
# t_m1=t_m/np.linalg.norm(t_m)
|
200 |
+
# dt=text_features.cpu().numpy()[0]-t_m1
|
201 |
+
print(np.linalg.norm(dt))
|
202 |
+
dt=dt/np.linalg.norm(dt)
|
203 |
+
return dt
|
204 |
+
|
205 |
+
|
206 |
+
def GetBoundary(fs3,dt,M,threshold):
|
207 |
+
tmp=np.dot(fs3,dt)
|
208 |
+
|
209 |
+
ds_imp=copy.copy(tmp)
|
210 |
+
select=np.abs(tmp)<threshold
|
211 |
+
num_c=np.sum(~select)
|
212 |
+
|
213 |
+
|
214 |
+
ds_imp[select]=0
|
215 |
+
tmp=np.abs(ds_imp).max()
|
216 |
+
ds_imp/=tmp
|
217 |
+
|
218 |
+
boundary_tmp2=SplitS(ds_imp,M,if_std=True)
|
219 |
+
print('num of channels being manipulated:',num_c)
|
220 |
+
return boundary_tmp2,num_c
|
221 |
+
|
222 |
+
def GetFs(file_path):
|
223 |
+
fs=np.load(file_path+'single_channel.npy')
|
224 |
+
tmp=np.linalg.norm(fs,axis=-1)
|
225 |
+
fs1=fs/tmp[:,:,:,None]
|
226 |
+
fs2=fs1[:,:,1,:]-fs1[:,:,0,:] # 5*sigma - (-5)* sigma
|
227 |
+
fs3=fs2/np.linalg.norm(fs2,axis=-1)[:,:,None]
|
228 |
+
fs3=fs3.mean(axis=1)
|
229 |
+
fs3=fs3/np.linalg.norm(fs3,axis=-1)[:,None]
|
230 |
+
return fs3
|
231 |
+
#%%
|
232 |
+
|
233 |
+
if __name__ == "__main__":
|
234 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
235 |
+
model, preprocess = clip.load("ViT-B/32", device=device)
|
236 |
+
#%%
|
237 |
+
sys.path.append('/cs/labs/danix/wuzongze/Gan_Manipulation/play')
|
238 |
+
from example_try import Manipulator4
|
239 |
+
|
240 |
+
M=Manipulator4(dataset_name='ffhq',code_type='S')
|
241 |
+
np.set_printoptions(suppress=True)
|
242 |
+
|
243 |
+
#%%
|
244 |
+
|
245 |
+
|
246 |
+
file_path='/cs/labs/danix/wuzongze/Tansformer_Manipulation/CLIP/results/'+M.dataset_name+'/'
|
247 |
+
fs3=GetFs(file_path)
|
248 |
+
|
249 |
+
|
250 |
+
|
251 |
+
#%%
|
252 |
+
'''
|
253 |
+
text_features=zeroshot_classifier2(classnames, imagenet_templates) #.t()
|
254 |
+
|
255 |
+
tmp=np.linalg.norm(text_features,axis=2)
|
256 |
+
text_features/=tmp[:,:,None]
|
257 |
+
dt=text_features[0]-text_features[1]
|
258 |
+
|
259 |
+
tmp=np.linalg.norm(dt,axis=1)
|
260 |
+
dt/=tmp[:,None]
|
261 |
+
dt=dt.mean(axis=0)
|
262 |
+
'''
|
263 |
+
|
264 |
+
#%%
|
265 |
+
'''
|
266 |
+
all_tmp=[]
|
267 |
+
tmp=torch.load('/cs/labs/danix/wuzongze/downloads/harris_latent.pt')
|
268 |
+
tmp=tmp.cpu().detach().numpy() #[:,:14,:]
|
269 |
+
all_tmp.append(tmp)
|
270 |
+
|
271 |
+
tmp=torch.load('/cs/labs/danix/wuzongze/downloads/ariana_latent.pt')
|
272 |
+
tmp=tmp.cpu().detach().numpy() #[:,:14,:]
|
273 |
+
all_tmp.append(tmp)
|
274 |
+
|
275 |
+
tmp=torch.load('/cs/labs/danix/wuzongze/downloads/federer.pt')
|
276 |
+
tmp=tmp.cpu().detach().numpy() #[:,:14,:]
|
277 |
+
all_tmp.append(tmp)
|
278 |
+
|
279 |
+
all_tmp=np.array(all_tmp)[:,0]
|
280 |
+
|
281 |
+
dlatent_tmp=M.W2S(all_tmp)
|
282 |
+
'''
|
283 |
+
'''
|
284 |
+
tmp=torch.load('/cs/labs/danix/wuzongze/downloads/all_cars.pt')
|
285 |
+
tmp=tmp.cpu().detach().numpy()[:300]
|
286 |
+
dlatent_tmp=M.W2S(tmp)
|
287 |
+
'''
|
288 |
+
'''
|
289 |
+
tmp=torch.load('/cs/labs/danix/wuzongze/downloads/faces.pt')
|
290 |
+
tmp=tmp.cpu().detach().numpy()[:100]
|
291 |
+
dlatent_tmp=M.W2S(tmp)
|
292 |
+
'''
|
293 |
+
#%%
|
294 |
+
# M.viz_size=1024
|
295 |
+
M.img_index=0
|
296 |
+
M.num_images=30
|
297 |
+
dlatent_tmp=[tmp[M.img_index:(M.img_index+M.num_images)] for tmp in M.dlatents]
|
298 |
+
#%%
|
299 |
+
|
300 |
+
classnames=['face','face with glasses']
|
301 |
+
|
302 |
+
# classnames=['car','classic car']
|
303 |
+
# classnames=['dog','happy dog']
|
304 |
+
# classnames=['bedroom','modern bedroom']
|
305 |
+
|
306 |
+
# classnames=['church','church without watermark']
|
307 |
+
# classnames=['natural scene','natural scene without grass']
|
308 |
+
dt=GetDt(classnames,model)
|
309 |
+
# tmp=np.dot(fs3,dt)
|
310 |
+
#
|
311 |
+
# ds_imp=copy.copy(tmp)
|
312 |
+
# select=np.abs(tmp)<0.1
|
313 |
+
# num_c=np.sum(~select)
|
314 |
+
#
|
315 |
+
#
|
316 |
+
# ds_imp[select]=0
|
317 |
+
# tmp=np.abs(ds_imp).max()
|
318 |
+
# ds_imp/=tmp
|
319 |
+
#
|
320 |
+
# boundary_tmp2=SplitS(ds_imp,M,if_std=True)
|
321 |
+
# print('num of channels being manipulated:',num_c)
|
322 |
+
|
323 |
+
boundary_tmp2=GetBoundary(fs3,dt,M,threshold=0.13)
|
324 |
+
|
325 |
+
#%%
|
326 |
+
M.start_distance=-20
|
327 |
+
M.end_distance=20
|
328 |
+
M.step=7
|
329 |
+
# M.num_images=100
|
330 |
+
codes=M.MSCode(dlatent_tmp,boundary_tmp2)
|
331 |
+
out=M.GenerateImg(codes)
|
332 |
+
M.Vis2(str('tmp'),'filter2',out)
|
333 |
+
|
334 |
+
# full=GetAlign(out,dt,model,preprocess)
|
335 |
+
|
336 |
+
|
337 |
+
#%%
|
338 |
+
boundary_tmp3=copy.copy(boundary_tmp2) #primary
|
339 |
+
boundary_tmp4=copy.copy(boundary_tmp2) #condition
|
340 |
+
#%%
|
341 |
+
boundary_tmp2=copy.copy(boundary_tmp3)
|
342 |
+
for i in range(len(boundary_tmp3)):
|
343 |
+
select=boundary_tmp4[i]==0
|
344 |
+
boundary_tmp2[i][~select]=0
|
345 |
+
|
346 |
+
|
347 |
+
|
348 |
+
|
349 |
+
|
350 |
+
|
351 |
+
|
352 |
+
#%%1
|
353 |
+
|
354 |
+
|
355 |
+
|
356 |
+
|
357 |
+
|
358 |
+
|
359 |
+
|
360 |
+
|
361 |
+
|
362 |
+
|
363 |
+
|
364 |
+
|
365 |
+
|
366 |
+
|
367 |
+
|
368 |
+
|
369 |
+
|
370 |
+
|
371 |
+
|
372 |
+
|
373 |
+
|
374 |
+
|
375 |
+
|
376 |
+
|
377 |
+
|
378 |
+
|
379 |
+
|
380 |
+
|
381 |
+
|
382 |
+
|
383 |
+
|
384 |
+
|
385 |
+
|
386 |
+
|
387 |
+
|
388 |
+
|
389 |
+
|
390 |
+
|
391 |
+
|
392 |
+
|
393 |
+
|
394 |
+
|
PTI/models/StyleCLIP/global_directions/PlayInteractively.py
ADDED
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
|
4 |
+
from tkinter import Tk
|
5 |
+
from PIL import Image, ImageTk
|
6 |
+
from tkinter.filedialog import askopenfilename
|
7 |
+
from GUI import View
|
8 |
+
from Inference import StyleCLIP
|
9 |
+
import argparse
|
10 |
+
#%%
|
11 |
+
|
12 |
+
|
13 |
+
class PlayInteractively(): #Controller
|
14 |
+
'''
|
15 |
+
followed Model View Controller Design Pattern
|
16 |
+
|
17 |
+
controller, model, view
|
18 |
+
'''
|
19 |
+
def __init__(self,dataset_name='ffhq'):
|
20 |
+
|
21 |
+
self.root = Tk()
|
22 |
+
self.view=View(self.root)
|
23 |
+
self.img_ratio=2
|
24 |
+
self.style_clip=StyleCLIP(dataset_name)
|
25 |
+
|
26 |
+
self.view.neutral.bind("<Return>", self.text_n)
|
27 |
+
self.view.target.bind("<Return>", self.text_t)
|
28 |
+
self.view.alpha.bind('<ButtonRelease-1>', self.ChangeAlpha)
|
29 |
+
self.view.beta.bind('<ButtonRelease-1>', self.ChangeBeta)
|
30 |
+
self.view.set_init.bind('<ButtonPress-1>', self.SetInit)
|
31 |
+
self.view.reset.bind('<ButtonPress-1>', self.Reset)
|
32 |
+
self.view.bg.bind('<Double-1>', self.open_img)
|
33 |
+
|
34 |
+
|
35 |
+
self.drawn = None
|
36 |
+
|
37 |
+
self.view.target.delete(1.0, "end")
|
38 |
+
self.view.target.insert("end", self.style_clip.target)
|
39 |
+
#
|
40 |
+
self.view.neutral.delete(1.0, "end")
|
41 |
+
self.view.neutral.insert("end", self.style_clip.neutral)
|
42 |
+
|
43 |
+
|
44 |
+
def Reset(self,event):
|
45 |
+
self.style_clip.GetDt2()
|
46 |
+
self.style_clip.M.alpha=[0]
|
47 |
+
|
48 |
+
self.view.beta.set(self.style_clip.beta)
|
49 |
+
self.view.alpha.set(0)
|
50 |
+
|
51 |
+
img=self.style_clip.GetImg()
|
52 |
+
img=Image.fromarray(img)
|
53 |
+
img = ImageTk.PhotoImage(img)
|
54 |
+
self.addImage_m(img)
|
55 |
+
|
56 |
+
|
57 |
+
def SetInit(self,event):
|
58 |
+
codes=self.style_clip.GetCode()
|
59 |
+
self.style_clip.M.dlatent_tmp=[tmp[:,0] for tmp in codes]
|
60 |
+
print('set init')
|
61 |
+
|
62 |
+
def ChangeAlpha(self,event):
|
63 |
+
tmp=self.view.alpha.get()
|
64 |
+
self.style_clip.M.alpha=[float(tmp)]
|
65 |
+
|
66 |
+
img=self.style_clip.GetImg()
|
67 |
+
print('manipulate one')
|
68 |
+
img=Image.fromarray(img)
|
69 |
+
img = ImageTk.PhotoImage(img)
|
70 |
+
self.addImage_m(img)
|
71 |
+
|
72 |
+
def ChangeBeta(self,event):
|
73 |
+
tmp=self.view.beta.get()
|
74 |
+
self.style_clip.beta=float(tmp)
|
75 |
+
|
76 |
+
img=self.style_clip.GetImg()
|
77 |
+
print('manipulate one')
|
78 |
+
img=Image.fromarray(img)
|
79 |
+
img = ImageTk.PhotoImage(img)
|
80 |
+
self.addImage_m(img)
|
81 |
+
|
82 |
+
def ChangeDataset(self,event):
|
83 |
+
|
84 |
+
dataset_name=self.view.set_category.get()
|
85 |
+
|
86 |
+
self.style_clip.LoadData(dataset_name)
|
87 |
+
|
88 |
+
self.view.target.delete(1.0, "end")
|
89 |
+
self.view.target.insert("end", self.style_clip.target)
|
90 |
+
|
91 |
+
self.view.neutral.delete(1.0, "end")
|
92 |
+
self.view.neutral.insert("end", self.style_clip.neutral)
|
93 |
+
|
94 |
+
def text_t(self,event):
|
95 |
+
tmp=self.view.target.get("1.0",'end')
|
96 |
+
tmp=tmp.replace('\n','')
|
97 |
+
|
98 |
+
self.view.target.delete(1.0, "end")
|
99 |
+
self.view.target.insert("end", tmp)
|
100 |
+
|
101 |
+
print('target',tmp,'###')
|
102 |
+
self.style_clip.target=tmp
|
103 |
+
self.style_clip.GetDt2()
|
104 |
+
self.view.beta.set(self.style_clip.beta)
|
105 |
+
self.view.alpha.set(3)
|
106 |
+
self.style_clip.M.alpha=[3]
|
107 |
+
|
108 |
+
img=self.style_clip.GetImg()
|
109 |
+
print('manipulate one')
|
110 |
+
img=Image.fromarray(img)
|
111 |
+
img = ImageTk.PhotoImage(img)
|
112 |
+
self.addImage_m(img)
|
113 |
+
|
114 |
+
|
115 |
+
def text_n(self,event):
|
116 |
+
tmp=self.view.neutral.get("1.0",'end')
|
117 |
+
tmp=tmp.replace('\n','')
|
118 |
+
|
119 |
+
self.view.neutral.delete(1.0, "end")
|
120 |
+
self.view.neutral.insert("end", tmp)
|
121 |
+
|
122 |
+
print('neutral',tmp,'###')
|
123 |
+
self.style_clip.neutral=tmp
|
124 |
+
self.view.target.delete(1.0, "end")
|
125 |
+
self.view.target.insert("end", tmp)
|
126 |
+
|
127 |
+
|
128 |
+
def run(self):
|
129 |
+
self.root.mainloop()
|
130 |
+
|
131 |
+
def addImage(self,img):
|
132 |
+
self.view.bg.create_image(self.view.width/2, self.view.height/2, image=img, anchor='center')
|
133 |
+
self.image=img #save a copy of image. if not the image will disappear
|
134 |
+
|
135 |
+
def addImage_m(self,img):
|
136 |
+
self.view.mani.create_image(512, 512, image=img, anchor='center')
|
137 |
+
self.image2=img
|
138 |
+
|
139 |
+
|
140 |
+
def openfn(self):
|
141 |
+
filename = askopenfilename(title='open',initialdir='./data/'+self.style_clip.M.dataset_name+'/',filetypes=[("all image format", ".jpg"),("all image format", ".png")])
|
142 |
+
return filename
|
143 |
+
|
144 |
+
def open_img(self,event):
|
145 |
+
x = self.openfn()
|
146 |
+
print(x)
|
147 |
+
|
148 |
+
|
149 |
+
img = Image.open(x)
|
150 |
+
img2 = img.resize(( 512,512), Image.ANTIALIAS)
|
151 |
+
img2 = ImageTk.PhotoImage(img2)
|
152 |
+
self.addImage(img2)
|
153 |
+
|
154 |
+
img = ImageTk.PhotoImage(img)
|
155 |
+
self.addImage_m(img)
|
156 |
+
|
157 |
+
img_index=x.split('/')[-1].split('.')[0]
|
158 |
+
img_index=int(img_index)
|
159 |
+
print(img_index)
|
160 |
+
self.style_clip.M.img_index=img_index
|
161 |
+
self.style_clip.M.dlatent_tmp=[tmp[img_index:(img_index+1)] for tmp in self.style_clip.M.dlatents]
|
162 |
+
|
163 |
+
|
164 |
+
self.style_clip.GetDt2()
|
165 |
+
self.view.beta.set(self.style_clip.beta)
|
166 |
+
self.view.alpha.set(3)
|
167 |
+
|
168 |
+
#%%
|
169 |
+
if __name__ == "__main__":
|
170 |
+
parser = argparse.ArgumentParser(description='Process some integers.')
|
171 |
+
|
172 |
+
parser.add_argument('--dataset_name',type=str,default='ffhq',
|
173 |
+
help='name of dataset, for example, ffhq')
|
174 |
+
|
175 |
+
args = parser.parse_args()
|
176 |
+
dataset_name=args.dataset_name
|
177 |
+
|
178 |
+
self=PlayInteractively(dataset_name)
|
179 |
+
self.run()
|
180 |
+
|
181 |
+
|
182 |
+
|
183 |
+
|
184 |
+
|
185 |
+
|
186 |
+
|
187 |
+
|
188 |
+
|
189 |
+
|
190 |
+
|
191 |
+
|
192 |
+
|
193 |
+
|
194 |
+
|
195 |
+
|
196 |
+
|
197 |
+
|
PTI/models/StyleCLIP/global_directions/SingleChannel.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import clip
|
7 |
+
from PIL import Image
|
8 |
+
import copy
|
9 |
+
from manipulate import Manipulator
|
10 |
+
import argparse
|
11 |
+
|
12 |
+
def GetImgF(out,model,preprocess):
|
13 |
+
imgs=out
|
14 |
+
imgs1=imgs.reshape([-1]+list(imgs.shape[2:]))
|
15 |
+
|
16 |
+
tmp=[]
|
17 |
+
for i in range(len(imgs1)):
|
18 |
+
|
19 |
+
img=Image.fromarray(imgs1[i])
|
20 |
+
image = preprocess(img).unsqueeze(0).to(device)
|
21 |
+
tmp.append(image)
|
22 |
+
|
23 |
+
image=torch.cat(tmp)
|
24 |
+
with torch.no_grad():
|
25 |
+
image_features = model.encode_image(image)
|
26 |
+
|
27 |
+
image_features1=image_features.cpu().numpy()
|
28 |
+
image_features1=image_features1.reshape(list(imgs.shape[:2])+[512])
|
29 |
+
|
30 |
+
return image_features1
|
31 |
+
|
32 |
+
def GetFs(fs):
|
33 |
+
tmp=np.linalg.norm(fs,axis=-1)
|
34 |
+
fs1=fs/tmp[:,:,:,None]
|
35 |
+
fs2=fs1[:,:,1,:]-fs1[:,:,0,:] # 5*sigma - (-5)* sigma
|
36 |
+
fs3=fs2/np.linalg.norm(fs2,axis=-1)[:,:,None]
|
37 |
+
fs3=fs3.mean(axis=1)
|
38 |
+
fs3=fs3/np.linalg.norm(fs3,axis=-1)[:,None]
|
39 |
+
return fs3
|
40 |
+
|
41 |
+
#%%
|
42 |
+
if __name__ == "__main__":
|
43 |
+
parser = argparse.ArgumentParser(description='Process some integers.')
|
44 |
+
|
45 |
+
parser.add_argument('--dataset_name',type=str,default='cat',
|
46 |
+
help='name of dataset, for example, ffhq')
|
47 |
+
args = parser.parse_args()
|
48 |
+
dataset_name=args.dataset_name
|
49 |
+
|
50 |
+
#%%
|
51 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
52 |
+
model, preprocess = clip.load("ViT-B/32", device=device)
|
53 |
+
#%%
|
54 |
+
M=Manipulator(dataset_name=dataset_name)
|
55 |
+
np.set_printoptions(suppress=True)
|
56 |
+
print(M.dataset_name)
|
57 |
+
#%%
|
58 |
+
img_sindex=0
|
59 |
+
num_images=100
|
60 |
+
dlatents_o=[]
|
61 |
+
tmp=img_sindex*num_images
|
62 |
+
for i in range(len(M.dlatents)):
|
63 |
+
tmp1=M.dlatents[i][tmp:(tmp+num_images)]
|
64 |
+
dlatents_o.append(tmp1)
|
65 |
+
#%%
|
66 |
+
|
67 |
+
all_f=[]
|
68 |
+
M.alpha=[-5,5] #ffhq 5
|
69 |
+
M.step=2
|
70 |
+
M.num_images=num_images
|
71 |
+
select=np.array(M.mindexs)<=16 #below or equal to 128 resolution
|
72 |
+
mindexs2=np.array(M.mindexs)[select]
|
73 |
+
for lindex in mindexs2: #ignore ToRGB layers
|
74 |
+
print(lindex)
|
75 |
+
num_c=M.dlatents[lindex].shape[1]
|
76 |
+
for cindex in range(num_c):
|
77 |
+
|
78 |
+
M.dlatents=copy.copy(dlatents_o)
|
79 |
+
M.dlatents[lindex][:,cindex]=M.code_mean[lindex][cindex]
|
80 |
+
|
81 |
+
M.manipulate_layers=[lindex]
|
82 |
+
codes,out=M.EditOneC(cindex)
|
83 |
+
image_features1=GetImgF(out,model,preprocess)
|
84 |
+
all_f.append(image_features1)
|
85 |
+
|
86 |
+
all_f=np.array(all_f)
|
87 |
+
|
88 |
+
fs3=GetFs(all_f)
|
89 |
+
|
90 |
+
#%%
|
91 |
+
file_path='./npy/'+M.dataset_name+'/'
|
92 |
+
np.save(file_path+'fs3',fs3)
|
93 |
+
|
94 |
+
|
95 |
+
|
96 |
+
|
97 |
+
|
98 |
+
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
|
103 |
+
|
104 |
+
|
105 |
+
|
106 |
+
|
107 |
+
|
108 |
+
|
109 |
+
|
PTI/models/StyleCLIP/global_directions/__init__.py
ADDED
File without changes
|
PTI/models/StyleCLIP/global_directions/data/ffhq/w_plus.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:394f0f166305654f49cd1b0cd3d4f2b7a51e740a449a1ebfa1c69f79d01399fa
|
3 |
+
size 2506880
|
PTI/models/StyleCLIP/global_directions/dnnlib/__init__.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
from .util import EasyDict, make_cache_dir_path
|
PTI/models/StyleCLIP/global_directions/dnnlib/tflib/__init__.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
from . import autosummary
|
10 |
+
from . import network
|
11 |
+
from . import optimizer
|
12 |
+
from . import tfutil
|
13 |
+
from . import custom_ops
|
14 |
+
|
15 |
+
from .tfutil import *
|
16 |
+
from .network import Network
|
17 |
+
|
18 |
+
from .optimizer import Optimizer
|
19 |
+
|
20 |
+
from .custom_ops import get_plugin
|
PTI/models/StyleCLIP/global_directions/dnnlib/tflib/autosummary.py
ADDED
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
"""Helper for adding automatically tracked values to Tensorboard.
|
10 |
+
|
11 |
+
Autosummary creates an identity op that internally keeps track of the input
|
12 |
+
values and automatically shows up in TensorBoard. The reported value
|
13 |
+
represents an average over input components. The average is accumulated
|
14 |
+
constantly over time and flushed when save_summaries() is called.
|
15 |
+
|
16 |
+
Notes:
|
17 |
+
- The output tensor must be used as an input for something else in the
|
18 |
+
graph. Otherwise, the autosummary op will not get executed, and the average
|
19 |
+
value will not get accumulated.
|
20 |
+
- It is perfectly fine to include autosummaries with the same name in
|
21 |
+
several places throughout the graph, even if they are executed concurrently.
|
22 |
+
- It is ok to also pass in a python scalar or numpy array. In this case, it
|
23 |
+
is added to the average immediately.
|
24 |
+
"""
|
25 |
+
|
26 |
+
from collections import OrderedDict
|
27 |
+
import numpy as np
|
28 |
+
import tensorflow as tf
|
29 |
+
from tensorboard import summary as summary_lib
|
30 |
+
from tensorboard.plugins.custom_scalar import layout_pb2
|
31 |
+
|
32 |
+
from . import tfutil
|
33 |
+
from .tfutil import TfExpression
|
34 |
+
from .tfutil import TfExpressionEx
|
35 |
+
|
36 |
+
# Enable "Custom scalars" tab in TensorBoard for advanced formatting.
|
37 |
+
# Disabled by default to reduce tfevents file size.
|
38 |
+
enable_custom_scalars = False
|
39 |
+
|
40 |
+
_dtype = tf.float64
|
41 |
+
_vars = OrderedDict() # name => [var, ...]
|
42 |
+
_immediate = OrderedDict() # name => update_op, update_value
|
43 |
+
_finalized = False
|
44 |
+
_merge_op = None
|
45 |
+
|
46 |
+
|
47 |
+
def _create_var(name: str, value_expr: TfExpression) -> TfExpression:
|
48 |
+
"""Internal helper for creating autosummary accumulators."""
|
49 |
+
assert not _finalized
|
50 |
+
name_id = name.replace("/", "_")
|
51 |
+
v = tf.cast(value_expr, _dtype)
|
52 |
+
|
53 |
+
if v.shape.is_fully_defined():
|
54 |
+
size = np.prod(v.shape.as_list())
|
55 |
+
size_expr = tf.constant(size, dtype=_dtype)
|
56 |
+
else:
|
57 |
+
size = None
|
58 |
+
size_expr = tf.reduce_prod(tf.cast(tf.shape(v), _dtype))
|
59 |
+
|
60 |
+
if size == 1:
|
61 |
+
if v.shape.ndims != 0:
|
62 |
+
v = tf.reshape(v, [])
|
63 |
+
v = [size_expr, v, tf.square(v)]
|
64 |
+
else:
|
65 |
+
v = [size_expr, tf.reduce_sum(v), tf.reduce_sum(tf.square(v))]
|
66 |
+
v = tf.cond(tf.is_finite(v[1]), lambda: tf.stack(v), lambda: tf.zeros(3, dtype=_dtype))
|
67 |
+
|
68 |
+
with tfutil.absolute_name_scope("Autosummary/" + name_id), tf.control_dependencies(None):
|
69 |
+
var = tf.Variable(tf.zeros(3, dtype=_dtype), trainable=False) # [sum(1), sum(x), sum(x**2)]
|
70 |
+
update_op = tf.cond(tf.is_variable_initialized(var), lambda: tf.assign_add(var, v), lambda: tf.assign(var, v))
|
71 |
+
|
72 |
+
if name in _vars:
|
73 |
+
_vars[name].append(var)
|
74 |
+
else:
|
75 |
+
_vars[name] = [var]
|
76 |
+
return update_op
|
77 |
+
|
78 |
+
|
79 |
+
def autosummary(name: str, value: TfExpressionEx, passthru: TfExpressionEx = None, condition: TfExpressionEx = True) -> TfExpressionEx:
|
80 |
+
"""Create a new autosummary.
|
81 |
+
|
82 |
+
Args:
|
83 |
+
name: Name to use in TensorBoard
|
84 |
+
value: TensorFlow expression or python value to track
|
85 |
+
passthru: Optionally return this TF node without modifications but tack an autosummary update side-effect to this node.
|
86 |
+
|
87 |
+
Example use of the passthru mechanism:
|
88 |
+
|
89 |
+
n = autosummary('l2loss', loss, passthru=n)
|
90 |
+
|
91 |
+
This is a shorthand for the following code:
|
92 |
+
|
93 |
+
with tf.control_dependencies([autosummary('l2loss', loss)]):
|
94 |
+
n = tf.identity(n)
|
95 |
+
"""
|
96 |
+
tfutil.assert_tf_initialized()
|
97 |
+
name_id = name.replace("/", "_")
|
98 |
+
|
99 |
+
if tfutil.is_tf_expression(value):
|
100 |
+
with tf.name_scope("summary_" + name_id), tf.device(value.device):
|
101 |
+
condition = tf.convert_to_tensor(condition, name='condition')
|
102 |
+
update_op = tf.cond(condition, lambda: tf.group(_create_var(name, value)), tf.no_op)
|
103 |
+
with tf.control_dependencies([update_op]):
|
104 |
+
return tf.identity(value if passthru is None else passthru)
|
105 |
+
|
106 |
+
else: # python scalar or numpy array
|
107 |
+
assert not tfutil.is_tf_expression(passthru)
|
108 |
+
assert not tfutil.is_tf_expression(condition)
|
109 |
+
if condition:
|
110 |
+
if name not in _immediate:
|
111 |
+
with tfutil.absolute_name_scope("Autosummary/" + name_id), tf.device(None), tf.control_dependencies(None):
|
112 |
+
update_value = tf.placeholder(_dtype)
|
113 |
+
update_op = _create_var(name, update_value)
|
114 |
+
_immediate[name] = update_op, update_value
|
115 |
+
update_op, update_value = _immediate[name]
|
116 |
+
tfutil.run(update_op, {update_value: value})
|
117 |
+
return value if passthru is None else passthru
|
118 |
+
|
119 |
+
|
120 |
+
def finalize_autosummaries() -> None:
|
121 |
+
"""Create the necessary ops to include autosummaries in TensorBoard report.
|
122 |
+
Note: This should be done only once per graph.
|
123 |
+
"""
|
124 |
+
global _finalized
|
125 |
+
tfutil.assert_tf_initialized()
|
126 |
+
|
127 |
+
if _finalized:
|
128 |
+
return None
|
129 |
+
|
130 |
+
_finalized = True
|
131 |
+
tfutil.init_uninitialized_vars([var for vars_list in _vars.values() for var in vars_list])
|
132 |
+
|
133 |
+
# Create summary ops.
|
134 |
+
with tf.device(None), tf.control_dependencies(None):
|
135 |
+
for name, vars_list in _vars.items():
|
136 |
+
name_id = name.replace("/", "_")
|
137 |
+
with tfutil.absolute_name_scope("Autosummary/" + name_id):
|
138 |
+
moments = tf.add_n(vars_list)
|
139 |
+
moments /= moments[0]
|
140 |
+
with tf.control_dependencies([moments]): # read before resetting
|
141 |
+
reset_ops = [tf.assign(var, tf.zeros(3, dtype=_dtype)) for var in vars_list]
|
142 |
+
with tf.name_scope(None), tf.control_dependencies(reset_ops): # reset before reporting
|
143 |
+
mean = moments[1]
|
144 |
+
std = tf.sqrt(moments[2] - tf.square(moments[1]))
|
145 |
+
tf.summary.scalar(name, mean)
|
146 |
+
if enable_custom_scalars:
|
147 |
+
tf.summary.scalar("xCustomScalars/" + name + "/margin_lo", mean - std)
|
148 |
+
tf.summary.scalar("xCustomScalars/" + name + "/margin_hi", mean + std)
|
149 |
+
|
150 |
+
# Setup layout for custom scalars.
|
151 |
+
layout = None
|
152 |
+
if enable_custom_scalars:
|
153 |
+
cat_dict = OrderedDict()
|
154 |
+
for series_name in sorted(_vars.keys()):
|
155 |
+
p = series_name.split("/")
|
156 |
+
cat = p[0] if len(p) >= 2 else ""
|
157 |
+
chart = "/".join(p[1:-1]) if len(p) >= 3 else p[-1]
|
158 |
+
if cat not in cat_dict:
|
159 |
+
cat_dict[cat] = OrderedDict()
|
160 |
+
if chart not in cat_dict[cat]:
|
161 |
+
cat_dict[cat][chart] = []
|
162 |
+
cat_dict[cat][chart].append(series_name)
|
163 |
+
categories = []
|
164 |
+
for cat_name, chart_dict in cat_dict.items():
|
165 |
+
charts = []
|
166 |
+
for chart_name, series_names in chart_dict.items():
|
167 |
+
series = []
|
168 |
+
for series_name in series_names:
|
169 |
+
series.append(layout_pb2.MarginChartContent.Series(
|
170 |
+
value=series_name,
|
171 |
+
lower="xCustomScalars/" + series_name + "/margin_lo",
|
172 |
+
upper="xCustomScalars/" + series_name + "/margin_hi"))
|
173 |
+
margin = layout_pb2.MarginChartContent(series=series)
|
174 |
+
charts.append(layout_pb2.Chart(title=chart_name, margin=margin))
|
175 |
+
categories.append(layout_pb2.Category(title=cat_name, chart=charts))
|
176 |
+
layout = summary_lib.custom_scalar_pb(layout_pb2.Layout(category=categories))
|
177 |
+
return layout
|
178 |
+
|
179 |
+
def save_summaries(file_writer, global_step=None):
|
180 |
+
"""Call FileWriter.add_summary() with all summaries in the default graph,
|
181 |
+
automatically finalizing and merging them on the first call.
|
182 |
+
"""
|
183 |
+
global _merge_op
|
184 |
+
tfutil.assert_tf_initialized()
|
185 |
+
|
186 |
+
if _merge_op is None:
|
187 |
+
layout = finalize_autosummaries()
|
188 |
+
if layout is not None:
|
189 |
+
file_writer.add_summary(layout)
|
190 |
+
with tf.device(None), tf.control_dependencies(None):
|
191 |
+
_merge_op = tf.summary.merge_all()
|
192 |
+
|
193 |
+
file_writer.add_summary(_merge_op.eval(), global_step)
|
PTI/models/StyleCLIP/global_directions/dnnlib/tflib/custom_ops.py
ADDED
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
"""TensorFlow custom ops builder.
|
10 |
+
"""
|
11 |
+
|
12 |
+
import glob
|
13 |
+
import os
|
14 |
+
import re
|
15 |
+
import uuid
|
16 |
+
import hashlib
|
17 |
+
import tempfile
|
18 |
+
import shutil
|
19 |
+
import tensorflow as tf
|
20 |
+
from tensorflow.python.client import device_lib # pylint: disable=no-name-in-module
|
21 |
+
|
22 |
+
from .. import util
|
23 |
+
|
24 |
+
#----------------------------------------------------------------------------
|
25 |
+
# Global configs.
|
26 |
+
|
27 |
+
cuda_cache_path = None
|
28 |
+
cuda_cache_version_tag = 'v1'
|
29 |
+
do_not_hash_included_headers = True # Speed up compilation by assuming that headers included by the CUDA code never change.
|
30 |
+
verbose = True # Print status messages to stdout.
|
31 |
+
|
32 |
+
#----------------------------------------------------------------------------
|
33 |
+
# Internal helper funcs.
|
34 |
+
|
35 |
+
def _find_compiler_bindir():
|
36 |
+
hostx64_paths = sorted(glob.glob('C:/Program Files (x86)/Microsoft Visual Studio/*/Professional/VC/Tools/MSVC/*/bin/Hostx64/x64'), reverse=True)
|
37 |
+
if hostx64_paths != []:
|
38 |
+
return hostx64_paths[0]
|
39 |
+
hostx64_paths = sorted(glob.glob('C:/Program Files (x86)/Microsoft Visual Studio/*/BuildTools/VC/Tools/MSVC/*/bin/Hostx64/x64'), reverse=True)
|
40 |
+
if hostx64_paths != []:
|
41 |
+
return hostx64_paths[0]
|
42 |
+
hostx64_paths = sorted(glob.glob('C:/Program Files (x86)/Microsoft Visual Studio/*/Community/VC/Tools/MSVC/*/bin/Hostx64/x64'), reverse=True)
|
43 |
+
if hostx64_paths != []:
|
44 |
+
return hostx64_paths[0]
|
45 |
+
vc_bin_dir = 'C:/Program Files (x86)/Microsoft Visual Studio 14.0/vc/bin'
|
46 |
+
if os.path.isdir(vc_bin_dir):
|
47 |
+
return vc_bin_dir
|
48 |
+
return None
|
49 |
+
|
50 |
+
def _get_compute_cap(device):
|
51 |
+
caps_str = device.physical_device_desc
|
52 |
+
m = re.search('compute capability: (\\d+).(\\d+)', caps_str)
|
53 |
+
major = m.group(1)
|
54 |
+
minor = m.group(2)
|
55 |
+
return (major, minor)
|
56 |
+
|
57 |
+
def _get_cuda_gpu_arch_string():
|
58 |
+
gpus = [x for x in device_lib.list_local_devices() if x.device_type == 'GPU']
|
59 |
+
if len(gpus) == 0:
|
60 |
+
raise RuntimeError('No GPU devices found')
|
61 |
+
(major, minor) = _get_compute_cap(gpus[0])
|
62 |
+
return 'sm_%s%s' % (major, minor)
|
63 |
+
|
64 |
+
def _run_cmd(cmd):
|
65 |
+
with os.popen(cmd) as pipe:
|
66 |
+
output = pipe.read()
|
67 |
+
status = pipe.close()
|
68 |
+
if status is not None:
|
69 |
+
raise RuntimeError('NVCC returned an error. See below for full command line and output log:\n\n%s\n\n%s' % (cmd, output))
|
70 |
+
|
71 |
+
def _prepare_nvcc_cli(opts):
|
72 |
+
cmd = 'nvcc ' + opts.strip()
|
73 |
+
cmd += ' --disable-warnings'
|
74 |
+
cmd += ' --include-path "%s"' % tf.sysconfig.get_include()
|
75 |
+
cmd += ' --include-path "%s"' % os.path.join(tf.sysconfig.get_include(), 'external', 'protobuf_archive', 'src')
|
76 |
+
cmd += ' --include-path "%s"' % os.path.join(tf.sysconfig.get_include(), 'external', 'com_google_absl')
|
77 |
+
cmd += ' --include-path "%s"' % os.path.join(tf.sysconfig.get_include(), 'external', 'eigen_archive')
|
78 |
+
|
79 |
+
compiler_bindir = _find_compiler_bindir()
|
80 |
+
if compiler_bindir is None:
|
81 |
+
# Require that _find_compiler_bindir succeeds on Windows. Allow
|
82 |
+
# nvcc to use whatever is the default on Linux.
|
83 |
+
if os.name == 'nt':
|
84 |
+
raise RuntimeError('Could not find MSVC/GCC/CLANG installation on this computer. Check compiler_bindir_search_path list in "%s".' % __file__)
|
85 |
+
else:
|
86 |
+
cmd += ' --compiler-bindir "%s"' % compiler_bindir
|
87 |
+
cmd += ' 2>&1'
|
88 |
+
return cmd
|
89 |
+
|
90 |
+
#----------------------------------------------------------------------------
|
91 |
+
# Main entry point.
|
92 |
+
|
93 |
+
_plugin_cache = dict()
|
94 |
+
|
95 |
+
def get_plugin(cuda_file, extra_nvcc_options=[]):
|
96 |
+
cuda_file_base = os.path.basename(cuda_file)
|
97 |
+
cuda_file_name, cuda_file_ext = os.path.splitext(cuda_file_base)
|
98 |
+
|
99 |
+
# Already in cache?
|
100 |
+
if cuda_file in _plugin_cache:
|
101 |
+
return _plugin_cache[cuda_file]
|
102 |
+
|
103 |
+
# Setup plugin.
|
104 |
+
if verbose:
|
105 |
+
print('Setting up TensorFlow plugin "%s": ' % cuda_file_base, end='', flush=True)
|
106 |
+
try:
|
107 |
+
# Hash CUDA source.
|
108 |
+
md5 = hashlib.md5()
|
109 |
+
with open(cuda_file, 'rb') as f:
|
110 |
+
md5.update(f.read())
|
111 |
+
md5.update(b'\n')
|
112 |
+
|
113 |
+
# Hash headers included by the CUDA code by running it through the preprocessor.
|
114 |
+
if not do_not_hash_included_headers:
|
115 |
+
if verbose:
|
116 |
+
print('Preprocessing... ', end='', flush=True)
|
117 |
+
with tempfile.TemporaryDirectory() as tmp_dir:
|
118 |
+
tmp_file = os.path.join(tmp_dir, cuda_file_name + '_tmp' + cuda_file_ext)
|
119 |
+
_run_cmd(_prepare_nvcc_cli('"%s" --preprocess -o "%s" --keep --keep-dir "%s"' % (cuda_file, tmp_file, tmp_dir)))
|
120 |
+
with open(tmp_file, 'rb') as f:
|
121 |
+
bad_file_str = ('"' + cuda_file.replace('\\', '/') + '"').encode('utf-8') # __FILE__ in error check macros
|
122 |
+
good_file_str = ('"' + cuda_file_base + '"').encode('utf-8')
|
123 |
+
for ln in f:
|
124 |
+
if not ln.startswith(b'# ') and not ln.startswith(b'#line '): # ignore line number pragmas
|
125 |
+
ln = ln.replace(bad_file_str, good_file_str)
|
126 |
+
md5.update(ln)
|
127 |
+
md5.update(b'\n')
|
128 |
+
|
129 |
+
# Select compiler configs.
|
130 |
+
compile_opts = ''
|
131 |
+
if os.name == 'nt':
|
132 |
+
compile_opts += '"%s"' % os.path.join(tf.sysconfig.get_lib(), 'python', '_pywrap_tensorflow_internal.lib')
|
133 |
+
elif os.name == 'posix':
|
134 |
+
compile_opts += f' --compiler-options \'-fPIC\''
|
135 |
+
compile_opts += f' --compiler-options \'{" ".join(tf.sysconfig.get_compile_flags())}\''
|
136 |
+
compile_opts += f' --linker-options \'{" ".join(tf.sysconfig.get_link_flags())}\''
|
137 |
+
else:
|
138 |
+
assert False # not Windows or Linux, w00t?
|
139 |
+
compile_opts += f' --gpu-architecture={_get_cuda_gpu_arch_string()}'
|
140 |
+
compile_opts += ' --use_fast_math'
|
141 |
+
for opt in extra_nvcc_options:
|
142 |
+
compile_opts += ' ' + opt
|
143 |
+
nvcc_cmd = _prepare_nvcc_cli(compile_opts)
|
144 |
+
|
145 |
+
# Hash build configuration.
|
146 |
+
md5.update(('nvcc_cmd: ' + nvcc_cmd).encode('utf-8') + b'\n')
|
147 |
+
md5.update(('tf.VERSION: ' + tf.VERSION).encode('utf-8') + b'\n')
|
148 |
+
md5.update(('cuda_cache_version_tag: ' + cuda_cache_version_tag).encode('utf-8') + b'\n')
|
149 |
+
|
150 |
+
# Compile if not already compiled.
|
151 |
+
cache_dir = util.make_cache_dir_path('tflib-cudacache') if cuda_cache_path is None else cuda_cache_path
|
152 |
+
bin_file_ext = '.dll' if os.name == 'nt' else '.so'
|
153 |
+
bin_file = os.path.join(cache_dir, cuda_file_name + '_' + md5.hexdigest() + bin_file_ext)
|
154 |
+
if not os.path.isfile(bin_file):
|
155 |
+
if verbose:
|
156 |
+
print('Compiling... ', end='', flush=True)
|
157 |
+
with tempfile.TemporaryDirectory() as tmp_dir:
|
158 |
+
tmp_file = os.path.join(tmp_dir, cuda_file_name + '_tmp' + bin_file_ext)
|
159 |
+
_run_cmd(nvcc_cmd + ' "%s" --shared -o "%s" --keep --keep-dir "%s"' % (cuda_file, tmp_file, tmp_dir))
|
160 |
+
os.makedirs(cache_dir, exist_ok=True)
|
161 |
+
intermediate_file = os.path.join(cache_dir, cuda_file_name + '_' + uuid.uuid4().hex + '_tmp' + bin_file_ext)
|
162 |
+
shutil.copyfile(tmp_file, intermediate_file)
|
163 |
+
os.rename(intermediate_file, bin_file) # atomic
|
164 |
+
|
165 |
+
# Load.
|
166 |
+
if verbose:
|
167 |
+
print('Loading... ', end='', flush=True)
|
168 |
+
plugin = tf.load_op_library(bin_file)
|
169 |
+
|
170 |
+
# Add to cache.
|
171 |
+
_plugin_cache[cuda_file] = plugin
|
172 |
+
if verbose:
|
173 |
+
print('Done.', flush=True)
|
174 |
+
return plugin
|
175 |
+
|
176 |
+
except:
|
177 |
+
if verbose:
|
178 |
+
print('Failed!', flush=True)
|
179 |
+
raise
|
180 |
+
|
181 |
+
#----------------------------------------------------------------------------
|
PTI/models/StyleCLIP/global_directions/dnnlib/tflib/network.py
ADDED
@@ -0,0 +1,781 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
"""Helper for managing networks."""
|
10 |
+
|
11 |
+
import types
|
12 |
+
import inspect
|
13 |
+
import re
|
14 |
+
import uuid
|
15 |
+
import sys
|
16 |
+
import copy
|
17 |
+
import numpy as np
|
18 |
+
import tensorflow as tf
|
19 |
+
|
20 |
+
from collections import OrderedDict
|
21 |
+
from typing import Any, List, Tuple, Union, Callable
|
22 |
+
|
23 |
+
from . import tfutil
|
24 |
+
from .. import util
|
25 |
+
|
26 |
+
from .tfutil import TfExpression, TfExpressionEx
|
27 |
+
|
28 |
+
# pylint: disable=protected-access
|
29 |
+
# pylint: disable=attribute-defined-outside-init
|
30 |
+
# pylint: disable=too-many-public-methods
|
31 |
+
|
32 |
+
_import_handlers = [] # Custom import handlers for dealing with legacy data in pickle import.
|
33 |
+
_import_module_src = dict() # Source code for temporary modules created during pickle import.
|
34 |
+
|
35 |
+
|
36 |
+
def import_handler(handler_func):
|
37 |
+
"""Function decorator for declaring custom import handlers."""
|
38 |
+
_import_handlers.append(handler_func)
|
39 |
+
return handler_func
|
40 |
+
|
41 |
+
|
42 |
+
class Network:
|
43 |
+
"""Generic network abstraction.
|
44 |
+
|
45 |
+
Acts as a convenience wrapper for a parameterized network construction
|
46 |
+
function, providing several utility methods and convenient access to
|
47 |
+
the inputs/outputs/weights.
|
48 |
+
|
49 |
+
Network objects can be safely pickled and unpickled for long-term
|
50 |
+
archival purposes. The pickling works reliably as long as the underlying
|
51 |
+
network construction function is defined in a standalone Python module
|
52 |
+
that has no side effects or application-specific imports.
|
53 |
+
|
54 |
+
Args:
|
55 |
+
name: Network name. Used to select TensorFlow name and variable scopes. Defaults to build func name if None.
|
56 |
+
func_name: Fully qualified name of the underlying network construction function, or a top-level function object.
|
57 |
+
static_kwargs: Keyword arguments to be passed in to the network construction function.
|
58 |
+
"""
|
59 |
+
|
60 |
+
def __init__(self, name: str = None, func_name: Any = None, **static_kwargs):
|
61 |
+
# Locate the user-specified build function.
|
62 |
+
assert isinstance(func_name, str) or util.is_top_level_function(func_name)
|
63 |
+
if util.is_top_level_function(func_name):
|
64 |
+
func_name = util.get_top_level_function_name(func_name)
|
65 |
+
module, func_name = util.get_module_from_obj_name(func_name)
|
66 |
+
func = util.get_obj_from_module(module, func_name)
|
67 |
+
|
68 |
+
# Dig up source code for the module containing the build function.
|
69 |
+
module_src = _import_module_src.get(module, None)
|
70 |
+
if module_src is None:
|
71 |
+
module_src = inspect.getsource(module)
|
72 |
+
|
73 |
+
# Initialize fields.
|
74 |
+
self._init_fields(name=(name or func_name), static_kwargs=static_kwargs, build_func=func, build_func_name=func_name, build_module_src=module_src)
|
75 |
+
|
76 |
+
def _init_fields(self, name: str, static_kwargs: dict, build_func: Callable, build_func_name: str, build_module_src: str) -> None:
|
77 |
+
tfutil.assert_tf_initialized()
|
78 |
+
assert isinstance(name, str)
|
79 |
+
assert len(name) >= 1
|
80 |
+
assert re.fullmatch(r"[A-Za-z0-9_.\\-]*", name)
|
81 |
+
assert isinstance(static_kwargs, dict)
|
82 |
+
assert util.is_pickleable(static_kwargs)
|
83 |
+
assert callable(build_func)
|
84 |
+
assert isinstance(build_func_name, str)
|
85 |
+
assert isinstance(build_module_src, str)
|
86 |
+
|
87 |
+
# Choose TensorFlow name scope.
|
88 |
+
with tf.name_scope(None):
|
89 |
+
scope = tf.get_default_graph().unique_name(name, mark_as_used=True)
|
90 |
+
|
91 |
+
# Query current TensorFlow device.
|
92 |
+
with tfutil.absolute_name_scope(scope), tf.control_dependencies(None):
|
93 |
+
device = tf.no_op(name="_QueryDevice").device
|
94 |
+
|
95 |
+
# Immutable state.
|
96 |
+
self._name = name
|
97 |
+
self._scope = scope
|
98 |
+
self._device = device
|
99 |
+
self._static_kwargs = util.EasyDict(copy.deepcopy(static_kwargs))
|
100 |
+
self._build_func = build_func
|
101 |
+
self._build_func_name = build_func_name
|
102 |
+
self._build_module_src = build_module_src
|
103 |
+
|
104 |
+
# State before _init_graph().
|
105 |
+
self._var_inits = dict() # var_name => initial_value, set to None by _init_graph()
|
106 |
+
self._all_inits_known = False # Do we know for sure that _var_inits covers all the variables?
|
107 |
+
self._components = None # subnet_name => Network, None if the components are not known yet
|
108 |
+
|
109 |
+
# Initialized by _init_graph().
|
110 |
+
self._input_templates = None
|
111 |
+
self._output_templates = None
|
112 |
+
self._own_vars = None
|
113 |
+
|
114 |
+
# Cached values initialized the respective methods.
|
115 |
+
self._input_shapes = None
|
116 |
+
self._output_shapes = None
|
117 |
+
self._input_names = None
|
118 |
+
self._output_names = None
|
119 |
+
self._vars = None
|
120 |
+
self._trainables = None
|
121 |
+
self._var_global_to_local = None
|
122 |
+
self._run_cache = dict()
|
123 |
+
|
124 |
+
def _init_graph(self) -> None:
|
125 |
+
assert self._var_inits is not None
|
126 |
+
assert self._input_templates is None
|
127 |
+
assert self._output_templates is None
|
128 |
+
assert self._own_vars is None
|
129 |
+
|
130 |
+
# Initialize components.
|
131 |
+
if self._components is None:
|
132 |
+
self._components = util.EasyDict()
|
133 |
+
|
134 |
+
# Choose build func kwargs.
|
135 |
+
build_kwargs = dict(self.static_kwargs)
|
136 |
+
build_kwargs["is_template_graph"] = True
|
137 |
+
build_kwargs["components"] = self._components
|
138 |
+
|
139 |
+
# Override scope and device, and ignore surrounding control dependencies.
|
140 |
+
with tfutil.absolute_variable_scope(self.scope, reuse=False), tfutil.absolute_name_scope(self.scope), tf.device(self.device), tf.control_dependencies(None):
|
141 |
+
assert tf.get_variable_scope().name == self.scope
|
142 |
+
assert tf.get_default_graph().get_name_scope() == self.scope
|
143 |
+
|
144 |
+
# Create input templates.
|
145 |
+
self._input_templates = []
|
146 |
+
for param in inspect.signature(self._build_func).parameters.values():
|
147 |
+
if param.kind == param.POSITIONAL_OR_KEYWORD and param.default is param.empty:
|
148 |
+
self._input_templates.append(tf.placeholder(tf.float32, name=param.name))
|
149 |
+
|
150 |
+
# Call build func.
|
151 |
+
out_expr = self._build_func(*self._input_templates, **build_kwargs)
|
152 |
+
|
153 |
+
# Collect output templates and variables.
|
154 |
+
assert tfutil.is_tf_expression(out_expr) or isinstance(out_expr, tuple)
|
155 |
+
self._output_templates = [out_expr] if tfutil.is_tf_expression(out_expr) else list(out_expr)
|
156 |
+
self._own_vars = OrderedDict((var.name[len(self.scope) + 1:].split(":")[0], var) for var in tf.global_variables(self.scope + "/"))
|
157 |
+
|
158 |
+
# Check for errors.
|
159 |
+
if len(self._input_templates) == 0:
|
160 |
+
raise ValueError("Network build func did not list any inputs.")
|
161 |
+
if len(self._output_templates) == 0:
|
162 |
+
raise ValueError("Network build func did not return any outputs.")
|
163 |
+
if any(not tfutil.is_tf_expression(t) for t in self._output_templates):
|
164 |
+
raise ValueError("Network outputs must be TensorFlow expressions.")
|
165 |
+
if any(t.shape.ndims is None for t in self._input_templates):
|
166 |
+
raise ValueError("Network input shapes not defined. Please call x.set_shape() for each input.")
|
167 |
+
if any(t.shape.ndims is None for t in self._output_templates):
|
168 |
+
raise ValueError("Network output shapes not defined. Please call x.set_shape() where applicable.")
|
169 |
+
if any(not isinstance(comp, Network) for comp in self._components.values()):
|
170 |
+
raise ValueError("Components of a Network must be Networks themselves.")
|
171 |
+
if len(self._components) != len(set(comp.name for comp in self._components.values())):
|
172 |
+
raise ValueError("Components of a Network must have unique names.")
|
173 |
+
|
174 |
+
# Initialize variables.
|
175 |
+
if len(self._var_inits):
|
176 |
+
tfutil.set_vars({self._get_vars()[name]: value for name, value in self._var_inits.items() if name in self._get_vars()})
|
177 |
+
remaining_inits = [var.initializer for name, var in self._own_vars.items() if name not in self._var_inits]
|
178 |
+
if self._all_inits_known:
|
179 |
+
assert len(remaining_inits) == 0
|
180 |
+
else:
|
181 |
+
tfutil.run(remaining_inits)
|
182 |
+
self._var_inits = None
|
183 |
+
|
184 |
+
@property
|
185 |
+
def name(self):
|
186 |
+
"""User-specified name string."""
|
187 |
+
return self._name
|
188 |
+
|
189 |
+
@property
|
190 |
+
def scope(self):
|
191 |
+
"""Unique TensorFlow scope containing template graph and variables, derived from the user-specified name."""
|
192 |
+
return self._scope
|
193 |
+
|
194 |
+
@property
|
195 |
+
def device(self):
|
196 |
+
"""Name of the TensorFlow device that the weights of this network reside on. Determined by the current device at construction time."""
|
197 |
+
return self._device
|
198 |
+
|
199 |
+
@property
|
200 |
+
def static_kwargs(self):
|
201 |
+
"""EasyDict of arguments passed to the user-supplied build func."""
|
202 |
+
return copy.deepcopy(self._static_kwargs)
|
203 |
+
|
204 |
+
@property
|
205 |
+
def components(self):
|
206 |
+
"""EasyDict of sub-networks created by the build func."""
|
207 |
+
return copy.copy(self._get_components())
|
208 |
+
|
209 |
+
def _get_components(self):
|
210 |
+
if self._components is None:
|
211 |
+
self._init_graph()
|
212 |
+
assert self._components is not None
|
213 |
+
return self._components
|
214 |
+
|
215 |
+
@property
|
216 |
+
def input_shapes(self):
|
217 |
+
"""List of input tensor shapes, including minibatch dimension."""
|
218 |
+
if self._input_shapes is None:
|
219 |
+
self._input_shapes = [t.shape.as_list() for t in self.input_templates]
|
220 |
+
return copy.deepcopy(self._input_shapes)
|
221 |
+
|
222 |
+
@property
|
223 |
+
def output_shapes(self):
|
224 |
+
"""List of output tensor shapes, including minibatch dimension."""
|
225 |
+
if self._output_shapes is None:
|
226 |
+
self._output_shapes = [t.shape.as_list() for t in self.output_templates]
|
227 |
+
return copy.deepcopy(self._output_shapes)
|
228 |
+
|
229 |
+
@property
|
230 |
+
def input_shape(self):
|
231 |
+
"""Short-hand for input_shapes[0]."""
|
232 |
+
return self.input_shapes[0]
|
233 |
+
|
234 |
+
@property
|
235 |
+
def output_shape(self):
|
236 |
+
"""Short-hand for output_shapes[0]."""
|
237 |
+
return self.output_shapes[0]
|
238 |
+
|
239 |
+
@property
|
240 |
+
def num_inputs(self):
|
241 |
+
"""Number of input tensors."""
|
242 |
+
return len(self.input_shapes)
|
243 |
+
|
244 |
+
@property
|
245 |
+
def num_outputs(self):
|
246 |
+
"""Number of output tensors."""
|
247 |
+
return len(self.output_shapes)
|
248 |
+
|
249 |
+
@property
|
250 |
+
def input_names(self):
|
251 |
+
"""Name string for each input."""
|
252 |
+
if self._input_names is None:
|
253 |
+
self._input_names = [t.name.split("/")[-1].split(":")[0] for t in self.input_templates]
|
254 |
+
return copy.copy(self._input_names)
|
255 |
+
|
256 |
+
@property
|
257 |
+
def output_names(self):
|
258 |
+
"""Name string for each output."""
|
259 |
+
if self._output_names is None:
|
260 |
+
self._output_names = [t.name.split("/")[-1].split(":")[0] for t in self.output_templates]
|
261 |
+
return copy.copy(self._output_names)
|
262 |
+
|
263 |
+
@property
|
264 |
+
def input_templates(self):
|
265 |
+
"""Input placeholders in the template graph."""
|
266 |
+
if self._input_templates is None:
|
267 |
+
self._init_graph()
|
268 |
+
assert self._input_templates is not None
|
269 |
+
return copy.copy(self._input_templates)
|
270 |
+
|
271 |
+
@property
|
272 |
+
def output_templates(self):
|
273 |
+
"""Output tensors in the template graph."""
|
274 |
+
if self._output_templates is None:
|
275 |
+
self._init_graph()
|
276 |
+
assert self._output_templates is not None
|
277 |
+
return copy.copy(self._output_templates)
|
278 |
+
|
279 |
+
@property
|
280 |
+
def own_vars(self):
|
281 |
+
"""Variables defined by this network (local_name => var), excluding sub-networks."""
|
282 |
+
return copy.copy(self._get_own_vars())
|
283 |
+
|
284 |
+
def _get_own_vars(self):
|
285 |
+
if self._own_vars is None:
|
286 |
+
self._init_graph()
|
287 |
+
assert self._own_vars is not None
|
288 |
+
return self._own_vars
|
289 |
+
|
290 |
+
@property
|
291 |
+
def vars(self):
|
292 |
+
"""All variables (local_name => var)."""
|
293 |
+
return copy.copy(self._get_vars())
|
294 |
+
|
295 |
+
def _get_vars(self):
|
296 |
+
if self._vars is None:
|
297 |
+
self._vars = OrderedDict(self._get_own_vars())
|
298 |
+
for comp in self._get_components().values():
|
299 |
+
self._vars.update((comp.name + "/" + name, var) for name, var in comp._get_vars().items())
|
300 |
+
return self._vars
|
301 |
+
|
302 |
+
@property
|
303 |
+
def trainables(self):
|
304 |
+
"""All trainable variables (local_name => var)."""
|
305 |
+
return copy.copy(self._get_trainables())
|
306 |
+
|
307 |
+
def _get_trainables(self):
|
308 |
+
if self._trainables is None:
|
309 |
+
self._trainables = OrderedDict((name, var) for name, var in self.vars.items() if var.trainable)
|
310 |
+
return self._trainables
|
311 |
+
|
312 |
+
@property
|
313 |
+
def var_global_to_local(self):
|
314 |
+
"""Mapping from variable global names to local names."""
|
315 |
+
return copy.copy(self._get_var_global_to_local())
|
316 |
+
|
317 |
+
def _get_var_global_to_local(self):
|
318 |
+
if self._var_global_to_local is None:
|
319 |
+
self._var_global_to_local = OrderedDict((var.name.split(":")[0], name) for name, var in self.vars.items())
|
320 |
+
return self._var_global_to_local
|
321 |
+
|
322 |
+
def reset_own_vars(self) -> None:
|
323 |
+
"""Re-initialize all variables of this network, excluding sub-networks."""
|
324 |
+
if self._var_inits is None or self._components is None:
|
325 |
+
tfutil.run([var.initializer for var in self._get_own_vars().values()])
|
326 |
+
else:
|
327 |
+
self._var_inits.clear()
|
328 |
+
self._all_inits_known = False
|
329 |
+
|
330 |
+
def reset_vars(self) -> None:
|
331 |
+
"""Re-initialize all variables of this network, including sub-networks."""
|
332 |
+
if self._var_inits is None:
|
333 |
+
tfutil.run([var.initializer for var in self._get_vars().values()])
|
334 |
+
else:
|
335 |
+
self._var_inits.clear()
|
336 |
+
self._all_inits_known = False
|
337 |
+
if self._components is not None:
|
338 |
+
for comp in self._components.values():
|
339 |
+
comp.reset_vars()
|
340 |
+
|
341 |
+
def reset_trainables(self) -> None:
|
342 |
+
"""Re-initialize all trainable variables of this network, including sub-networks."""
|
343 |
+
tfutil.run([var.initializer for var in self._get_trainables().values()])
|
344 |
+
|
345 |
+
def get_output_for(self, *in_expr: TfExpression, return_as_list: bool = False, **dynamic_kwargs) -> Union[TfExpression, List[TfExpression]]:
|
346 |
+
"""Construct TensorFlow expression(s) for the output(s) of this network, given the input expression(s).
|
347 |
+
The graph is placed on the current TensorFlow device."""
|
348 |
+
assert len(in_expr) == self.num_inputs
|
349 |
+
assert not all(expr is None for expr in in_expr)
|
350 |
+
self._get_vars() # ensure that all variables have been created
|
351 |
+
|
352 |
+
# Choose build func kwargs.
|
353 |
+
build_kwargs = dict(self.static_kwargs)
|
354 |
+
build_kwargs.update(dynamic_kwargs)
|
355 |
+
build_kwargs["is_template_graph"] = False
|
356 |
+
build_kwargs["components"] = self._components
|
357 |
+
|
358 |
+
# Build TensorFlow graph to evaluate the network.
|
359 |
+
with tfutil.absolute_variable_scope(self.scope, reuse=True), tf.name_scope(self.name):
|
360 |
+
assert tf.get_variable_scope().name == self.scope
|
361 |
+
valid_inputs = [expr for expr in in_expr if expr is not None]
|
362 |
+
final_inputs = []
|
363 |
+
for expr, name, shape in zip(in_expr, self.input_names, self.input_shapes):
|
364 |
+
if expr is not None:
|
365 |
+
expr = tf.identity(expr, name=name)
|
366 |
+
else:
|
367 |
+
expr = tf.zeros([tf.shape(valid_inputs[0])[0]] + shape[1:], name=name)
|
368 |
+
final_inputs.append(expr)
|
369 |
+
out_expr = self._build_func(*final_inputs, **build_kwargs)
|
370 |
+
|
371 |
+
# Propagate input shapes back to the user-specified expressions.
|
372 |
+
for expr, final in zip(in_expr, final_inputs):
|
373 |
+
if isinstance(expr, tf.Tensor):
|
374 |
+
expr.set_shape(final.shape)
|
375 |
+
|
376 |
+
# Express outputs in the desired format.
|
377 |
+
assert tfutil.is_tf_expression(out_expr) or isinstance(out_expr, tuple)
|
378 |
+
if return_as_list:
|
379 |
+
out_expr = [out_expr] if tfutil.is_tf_expression(out_expr) else list(out_expr)
|
380 |
+
return out_expr
|
381 |
+
|
382 |
+
def get_var_local_name(self, var_or_global_name: Union[TfExpression, str]) -> str:
|
383 |
+
"""Get the local name of a given variable, without any surrounding name scopes."""
|
384 |
+
assert tfutil.is_tf_expression(var_or_global_name) or isinstance(var_or_global_name, str)
|
385 |
+
global_name = var_or_global_name if isinstance(var_or_global_name, str) else var_or_global_name.name
|
386 |
+
return self._get_var_global_to_local()[global_name]
|
387 |
+
|
388 |
+
def find_var(self, var_or_local_name: Union[TfExpression, str]) -> TfExpression:
|
389 |
+
"""Find variable by local or global name."""
|
390 |
+
assert tfutil.is_tf_expression(var_or_local_name) or isinstance(var_or_local_name, str)
|
391 |
+
return self._get_vars()[var_or_local_name] if isinstance(var_or_local_name, str) else var_or_local_name
|
392 |
+
|
393 |
+
def get_var(self, var_or_local_name: Union[TfExpression, str]) -> np.ndarray:
|
394 |
+
"""Get the value of a given variable as NumPy array.
|
395 |
+
Note: This method is very inefficient -- prefer to use tflib.run(list_of_vars) whenever possible."""
|
396 |
+
return self.find_var(var_or_local_name).eval()
|
397 |
+
|
398 |
+
def set_var(self, var_or_local_name: Union[TfExpression, str], new_value: Union[int, float, np.ndarray]) -> None:
|
399 |
+
"""Set the value of a given variable based on the given NumPy array.
|
400 |
+
Note: This method is very inefficient -- prefer to use tflib.set_vars() whenever possible."""
|
401 |
+
tfutil.set_vars({self.find_var(var_or_local_name): new_value})
|
402 |
+
|
403 |
+
def __getstate__(self) -> dict:
|
404 |
+
"""Pickle export."""
|
405 |
+
state = dict()
|
406 |
+
state["version"] = 5
|
407 |
+
state["name"] = self.name
|
408 |
+
state["static_kwargs"] = dict(self.static_kwargs)
|
409 |
+
state["components"] = dict(self.components)
|
410 |
+
state["build_module_src"] = self._build_module_src
|
411 |
+
state["build_func_name"] = self._build_func_name
|
412 |
+
state["variables"] = list(zip(self._get_own_vars().keys(), tfutil.run(list(self._get_own_vars().values()))))
|
413 |
+
state["input_shapes"] = self.input_shapes
|
414 |
+
state["output_shapes"] = self.output_shapes
|
415 |
+
state["input_names"] = self.input_names
|
416 |
+
state["output_names"] = self.output_names
|
417 |
+
return state
|
418 |
+
|
419 |
+
def __setstate__(self, state: dict) -> None:
|
420 |
+
"""Pickle import."""
|
421 |
+
|
422 |
+
# Execute custom import handlers.
|
423 |
+
for handler in _import_handlers:
|
424 |
+
state = handler(state)
|
425 |
+
|
426 |
+
# Get basic fields.
|
427 |
+
assert state["version"] in [2, 3, 4, 5]
|
428 |
+
name = state["name"]
|
429 |
+
static_kwargs = state["static_kwargs"]
|
430 |
+
build_module_src = state["build_module_src"]
|
431 |
+
build_func_name = state["build_func_name"]
|
432 |
+
|
433 |
+
# Create temporary module from the imported source code.
|
434 |
+
module_name = "_tflib_network_import_" + uuid.uuid4().hex
|
435 |
+
module = types.ModuleType(module_name)
|
436 |
+
sys.modules[module_name] = module
|
437 |
+
_import_module_src[module] = build_module_src
|
438 |
+
exec(build_module_src, module.__dict__) # pylint: disable=exec-used
|
439 |
+
build_func = util.get_obj_from_module(module, build_func_name)
|
440 |
+
|
441 |
+
# Initialize fields.
|
442 |
+
self._init_fields(name=name, static_kwargs=static_kwargs, build_func=build_func, build_func_name=build_func_name, build_module_src=build_module_src)
|
443 |
+
self._var_inits.update(copy.deepcopy(state["variables"]))
|
444 |
+
self._all_inits_known = True
|
445 |
+
self._components = util.EasyDict(state.get("components", {}))
|
446 |
+
self._input_shapes = copy.deepcopy(state.get("input_shapes", None))
|
447 |
+
self._output_shapes = copy.deepcopy(state.get("output_shapes", None))
|
448 |
+
self._input_names = copy.deepcopy(state.get("input_names", None))
|
449 |
+
self._output_names = copy.deepcopy(state.get("output_names", None))
|
450 |
+
|
451 |
+
def clone(self, name: str = None, **new_static_kwargs) -> "Network":
|
452 |
+
"""Create a clone of this network with its own copy of the variables."""
|
453 |
+
static_kwargs = dict(self.static_kwargs)
|
454 |
+
static_kwargs.update(new_static_kwargs)
|
455 |
+
net = object.__new__(Network)
|
456 |
+
net._init_fields(name=(name or self.name), static_kwargs=static_kwargs, build_func=self._build_func, build_func_name=self._build_func_name, build_module_src=self._build_module_src)
|
457 |
+
net.copy_vars_from(self)
|
458 |
+
return net
|
459 |
+
|
460 |
+
def copy_own_vars_from(self, src_net: "Network") -> None:
|
461 |
+
"""Copy the values of all variables from the given network, excluding sub-networks."""
|
462 |
+
|
463 |
+
# Source has unknown variables or unknown components => init now.
|
464 |
+
if (src_net._var_inits is not None and not src_net._all_inits_known) or src_net._components is None:
|
465 |
+
src_net._get_vars()
|
466 |
+
|
467 |
+
# Both networks are inited => copy directly.
|
468 |
+
if src_net._var_inits is None and self._var_inits is None:
|
469 |
+
names = [name for name in self._get_own_vars().keys() if name in src_net._get_own_vars()]
|
470 |
+
tfutil.set_vars(tfutil.run({self._get_vars()[name]: src_net._get_vars()[name] for name in names}))
|
471 |
+
return
|
472 |
+
|
473 |
+
# Read from source.
|
474 |
+
if src_net._var_inits is None:
|
475 |
+
value_dict = tfutil.run(src_net._get_own_vars())
|
476 |
+
else:
|
477 |
+
value_dict = src_net._var_inits
|
478 |
+
|
479 |
+
# Write to destination.
|
480 |
+
if self._var_inits is None:
|
481 |
+
tfutil.set_vars({self._get_vars()[name]: value for name, value in value_dict.items() if name in self._get_vars()})
|
482 |
+
else:
|
483 |
+
self._var_inits.update(value_dict)
|
484 |
+
|
485 |
+
def copy_vars_from(self, src_net: "Network") -> None:
|
486 |
+
"""Copy the values of all variables from the given network, including sub-networks."""
|
487 |
+
|
488 |
+
# Source has unknown variables or unknown components => init now.
|
489 |
+
if (src_net._var_inits is not None and not src_net._all_inits_known) or src_net._components is None:
|
490 |
+
src_net._get_vars()
|
491 |
+
|
492 |
+
# Source is inited, but destination components have not been created yet => set as initial values.
|
493 |
+
if src_net._var_inits is None and self._components is None:
|
494 |
+
self._var_inits.update(tfutil.run(src_net._get_vars()))
|
495 |
+
return
|
496 |
+
|
497 |
+
# Destination has unknown components => init now.
|
498 |
+
if self._components is None:
|
499 |
+
self._get_vars()
|
500 |
+
|
501 |
+
# Both networks are inited => copy directly.
|
502 |
+
if src_net._var_inits is None and self._var_inits is None:
|
503 |
+
names = [name for name in self._get_vars().keys() if name in src_net._get_vars()]
|
504 |
+
tfutil.set_vars(tfutil.run({self._get_vars()[name]: src_net._get_vars()[name] for name in names}))
|
505 |
+
return
|
506 |
+
|
507 |
+
# Copy recursively, component by component.
|
508 |
+
self.copy_own_vars_from(src_net)
|
509 |
+
for name, src_comp in src_net._components.items():
|
510 |
+
if name in self._components:
|
511 |
+
self._components[name].copy_vars_from(src_comp)
|
512 |
+
|
513 |
+
def copy_trainables_from(self, src_net: "Network") -> None:
|
514 |
+
"""Copy the values of all trainable variables from the given network, including sub-networks."""
|
515 |
+
names = [name for name in self._get_trainables().keys() if name in src_net._get_trainables()]
|
516 |
+
tfutil.set_vars(tfutil.run({self._get_vars()[name]: src_net._get_vars()[name] for name in names}))
|
517 |
+
|
518 |
+
def convert(self, new_func_name: str, new_name: str = None, **new_static_kwargs) -> "Network":
|
519 |
+
"""Create new network with the given parameters, and copy all variables from this network."""
|
520 |
+
if new_name is None:
|
521 |
+
new_name = self.name
|
522 |
+
static_kwargs = dict(self.static_kwargs)
|
523 |
+
static_kwargs.update(new_static_kwargs)
|
524 |
+
net = Network(name=new_name, func_name=new_func_name, **static_kwargs)
|
525 |
+
net.copy_vars_from(self)
|
526 |
+
return net
|
527 |
+
|
528 |
+
def setup_as_moving_average_of(self, src_net: "Network", beta: TfExpressionEx = 0.99, beta_nontrainable: TfExpressionEx = 0.0) -> tf.Operation:
|
529 |
+
"""Construct a TensorFlow op that updates the variables of this network
|
530 |
+
to be slightly closer to those of the given network."""
|
531 |
+
with tfutil.absolute_name_scope(self.scope + "/_MovingAvg"):
|
532 |
+
ops = []
|
533 |
+
for name, var in self._get_vars().items():
|
534 |
+
if name in src_net._get_vars():
|
535 |
+
cur_beta = beta if var.trainable else beta_nontrainable
|
536 |
+
new_value = tfutil.lerp(src_net._get_vars()[name], var, cur_beta)
|
537 |
+
ops.append(var.assign(new_value))
|
538 |
+
return tf.group(*ops)
|
539 |
+
|
540 |
+
def run(self,
|
541 |
+
*in_arrays: Tuple[Union[np.ndarray, None], ...],
|
542 |
+
input_transform: dict = None,
|
543 |
+
output_transform: dict = None,
|
544 |
+
return_as_list: bool = False,
|
545 |
+
print_progress: bool = False,
|
546 |
+
minibatch_size: int = None,
|
547 |
+
num_gpus: int = 1,
|
548 |
+
assume_frozen: bool = False,
|
549 |
+
**dynamic_kwargs) -> Union[np.ndarray, Tuple[np.ndarray, ...], List[np.ndarray]]:
|
550 |
+
"""Run this network for the given NumPy array(s), and return the output(s) as NumPy array(s).
|
551 |
+
|
552 |
+
Args:
|
553 |
+
input_transform: A dict specifying a custom transformation to be applied to the input tensor(s) before evaluating the network.
|
554 |
+
The dict must contain a 'func' field that points to a top-level function. The function is called with the input
|
555 |
+
TensorFlow expression(s) as positional arguments. Any remaining fields of the dict will be passed in as kwargs.
|
556 |
+
output_transform: A dict specifying a custom transformation to be applied to the output tensor(s) after evaluating the network.
|
557 |
+
The dict must contain a 'func' field that points to a top-level function. The function is called with the output
|
558 |
+
TensorFlow expression(s) as positional arguments. Any remaining fields of the dict will be passed in as kwargs.
|
559 |
+
return_as_list: True = return a list of NumPy arrays, False = return a single NumPy array, or a tuple if there are multiple outputs.
|
560 |
+
print_progress: Print progress to the console? Useful for very large input arrays.
|
561 |
+
minibatch_size: Maximum minibatch size to use, None = disable batching.
|
562 |
+
num_gpus: Number of GPUs to use.
|
563 |
+
assume_frozen: Improve multi-GPU performance by assuming that the trainable parameters will remain changed between calls.
|
564 |
+
dynamic_kwargs: Additional keyword arguments to be passed into the network build function.
|
565 |
+
"""
|
566 |
+
assert len(in_arrays) == self.num_inputs
|
567 |
+
assert not all(arr is None for arr in in_arrays)
|
568 |
+
assert input_transform is None or util.is_top_level_function(input_transform["func"])
|
569 |
+
assert output_transform is None or util.is_top_level_function(output_transform["func"])
|
570 |
+
output_transform, dynamic_kwargs = _handle_legacy_output_transforms(output_transform, dynamic_kwargs)
|
571 |
+
num_items = in_arrays[0].shape[0]
|
572 |
+
if minibatch_size is None:
|
573 |
+
minibatch_size = num_items
|
574 |
+
|
575 |
+
# Construct unique hash key from all arguments that affect the TensorFlow graph.
|
576 |
+
key = dict(input_transform=input_transform, output_transform=output_transform, num_gpus=num_gpus, assume_frozen=assume_frozen, dynamic_kwargs=dynamic_kwargs)
|
577 |
+
def unwind_key(obj):
|
578 |
+
if isinstance(obj, dict):
|
579 |
+
return [(key, unwind_key(value)) for key, value in sorted(obj.items())]
|
580 |
+
if callable(obj):
|
581 |
+
return util.get_top_level_function_name(obj)
|
582 |
+
return obj
|
583 |
+
key = repr(unwind_key(key))
|
584 |
+
|
585 |
+
# Build graph.
|
586 |
+
if key not in self._run_cache:
|
587 |
+
with tfutil.absolute_name_scope(self.scope + "/_Run"), tf.control_dependencies(None):
|
588 |
+
with tf.device("/cpu:0"):
|
589 |
+
in_expr = [tf.placeholder(tf.float32, name=name) for name in self.input_names]
|
590 |
+
in_split = list(zip(*[tf.split(x, num_gpus) for x in in_expr]))
|
591 |
+
|
592 |
+
out_split = []
|
593 |
+
for gpu in range(num_gpus):
|
594 |
+
with tf.device(self.device if num_gpus == 1 else "/gpu:%d" % gpu):
|
595 |
+
net_gpu = self.clone() if assume_frozen else self
|
596 |
+
in_gpu = in_split[gpu]
|
597 |
+
|
598 |
+
if input_transform is not None:
|
599 |
+
in_kwargs = dict(input_transform)
|
600 |
+
in_gpu = in_kwargs.pop("func")(*in_gpu, **in_kwargs)
|
601 |
+
in_gpu = [in_gpu] if tfutil.is_tf_expression(in_gpu) else list(in_gpu)
|
602 |
+
|
603 |
+
assert len(in_gpu) == self.num_inputs
|
604 |
+
out_gpu = net_gpu.get_output_for(*in_gpu, return_as_list=True, **dynamic_kwargs)
|
605 |
+
|
606 |
+
if output_transform is not None:
|
607 |
+
out_kwargs = dict(output_transform)
|
608 |
+
out_gpu = out_kwargs.pop("func")(*out_gpu, **out_kwargs)
|
609 |
+
out_gpu = [out_gpu] if tfutil.is_tf_expression(out_gpu) else list(out_gpu)
|
610 |
+
|
611 |
+
assert len(out_gpu) == self.num_outputs
|
612 |
+
out_split.append(out_gpu)
|
613 |
+
|
614 |
+
with tf.device("/cpu:0"):
|
615 |
+
out_expr = [tf.concat(outputs, axis=0) for outputs in zip(*out_split)]
|
616 |
+
self._run_cache[key] = in_expr, out_expr
|
617 |
+
|
618 |
+
# Run minibatches.
|
619 |
+
in_expr, out_expr = self._run_cache[key]
|
620 |
+
out_arrays = [np.empty([num_items] + expr.shape.as_list()[1:], expr.dtype.name) for expr in out_expr]
|
621 |
+
|
622 |
+
for mb_begin in range(0, num_items, minibatch_size):
|
623 |
+
if print_progress:
|
624 |
+
print("\r%d / %d" % (mb_begin, num_items), end="")
|
625 |
+
|
626 |
+
mb_end = min(mb_begin + minibatch_size, num_items)
|
627 |
+
mb_num = mb_end - mb_begin
|
628 |
+
mb_in = [src[mb_begin : mb_end] if src is not None else np.zeros([mb_num] + shape[1:]) for src, shape in zip(in_arrays, self.input_shapes)]
|
629 |
+
mb_out = tf.get_default_session().run(out_expr, dict(zip(in_expr, mb_in)))
|
630 |
+
|
631 |
+
for dst, src in zip(out_arrays, mb_out):
|
632 |
+
dst[mb_begin: mb_end] = src
|
633 |
+
|
634 |
+
# Done.
|
635 |
+
if print_progress:
|
636 |
+
print("\r%d / %d" % (num_items, num_items))
|
637 |
+
|
638 |
+
if not return_as_list:
|
639 |
+
out_arrays = out_arrays[0] if len(out_arrays) == 1 else tuple(out_arrays)
|
640 |
+
return out_arrays
|
641 |
+
|
642 |
+
def list_ops(self) -> List[TfExpression]:
|
643 |
+
_ = self.output_templates # ensure that the template graph has been created
|
644 |
+
include_prefix = self.scope + "/"
|
645 |
+
exclude_prefix = include_prefix + "_"
|
646 |
+
ops = tf.get_default_graph().get_operations()
|
647 |
+
ops = [op for op in ops if op.name.startswith(include_prefix)]
|
648 |
+
ops = [op for op in ops if not op.name.startswith(exclude_prefix)]
|
649 |
+
return ops
|
650 |
+
|
651 |
+
def list_layers(self) -> List[Tuple[str, TfExpression, List[TfExpression]]]:
|
652 |
+
"""Returns a list of (layer_name, output_expr, trainable_vars) tuples corresponding to
|
653 |
+
individual layers of the network. Mainly intended to be used for reporting."""
|
654 |
+
layers = []
|
655 |
+
|
656 |
+
def recurse(scope, parent_ops, parent_vars, level):
|
657 |
+
if len(parent_ops) == 0 and len(parent_vars) == 0:
|
658 |
+
return
|
659 |
+
|
660 |
+
# Ignore specific patterns.
|
661 |
+
if any(p in scope for p in ["/Shape", "/strided_slice", "/Cast", "/concat", "/Assign"]):
|
662 |
+
return
|
663 |
+
|
664 |
+
# Filter ops and vars by scope.
|
665 |
+
global_prefix = scope + "/"
|
666 |
+
local_prefix = global_prefix[len(self.scope) + 1:]
|
667 |
+
cur_ops = [op for op in parent_ops if op.name.startswith(global_prefix) or op.name == global_prefix[:-1]]
|
668 |
+
cur_vars = [(name, var) for name, var in parent_vars if name.startswith(local_prefix) or name == local_prefix[:-1]]
|
669 |
+
if not cur_ops and not cur_vars:
|
670 |
+
return
|
671 |
+
|
672 |
+
# Filter out all ops related to variables.
|
673 |
+
for var in [op for op in cur_ops if op.type.startswith("Variable")]:
|
674 |
+
var_prefix = var.name + "/"
|
675 |
+
cur_ops = [op for op in cur_ops if not op.name.startswith(var_prefix)]
|
676 |
+
|
677 |
+
# Scope does not contain ops as immediate children => recurse deeper.
|
678 |
+
contains_direct_ops = any("/" not in op.name[len(global_prefix):] and op.type not in ["Identity", "Cast", "Transpose"] for op in cur_ops)
|
679 |
+
if (level == 0 or not contains_direct_ops) and (len(cur_ops) != 0 or len(cur_vars) != 0):
|
680 |
+
visited = set()
|
681 |
+
for rel_name in [op.name[len(global_prefix):] for op in cur_ops] + [name[len(local_prefix):] for name, _var in cur_vars]:
|
682 |
+
token = rel_name.split("/")[0]
|
683 |
+
if token not in visited:
|
684 |
+
recurse(global_prefix + token, cur_ops, cur_vars, level + 1)
|
685 |
+
visited.add(token)
|
686 |
+
return
|
687 |
+
|
688 |
+
# Report layer.
|
689 |
+
layer_name = scope[len(self.scope) + 1:]
|
690 |
+
layer_output = cur_ops[-1].outputs[0] if cur_ops else cur_vars[-1][1]
|
691 |
+
layer_trainables = [var for _name, var in cur_vars if var.trainable]
|
692 |
+
layers.append((layer_name, layer_output, layer_trainables))
|
693 |
+
|
694 |
+
recurse(self.scope, self.list_ops(), list(self._get_vars().items()), 0)
|
695 |
+
return layers
|
696 |
+
|
697 |
+
def print_layers(self, title: str = None, hide_layers_with_no_params: bool = False) -> None:
|
698 |
+
"""Print a summary table of the network structure."""
|
699 |
+
rows = [[title if title is not None else self.name, "Params", "OutputShape", "WeightShape"]]
|
700 |
+
rows += [["---"] * 4]
|
701 |
+
total_params = 0
|
702 |
+
|
703 |
+
for layer_name, layer_output, layer_trainables in self.list_layers():
|
704 |
+
num_params = sum(int(np.prod(var.shape.as_list())) for var in layer_trainables)
|
705 |
+
weights = [var for var in layer_trainables if var.name.endswith("/weight:0")]
|
706 |
+
weights.sort(key=lambda x: len(x.name))
|
707 |
+
if len(weights) == 0 and len(layer_trainables) == 1:
|
708 |
+
weights = layer_trainables
|
709 |
+
total_params += num_params
|
710 |
+
|
711 |
+
if not hide_layers_with_no_params or num_params != 0:
|
712 |
+
num_params_str = str(num_params) if num_params > 0 else "-"
|
713 |
+
output_shape_str = str(layer_output.shape)
|
714 |
+
weight_shape_str = str(weights[0].shape) if len(weights) >= 1 else "-"
|
715 |
+
rows += [[layer_name, num_params_str, output_shape_str, weight_shape_str]]
|
716 |
+
|
717 |
+
rows += [["---"] * 4]
|
718 |
+
rows += [["Total", str(total_params), "", ""]]
|
719 |
+
|
720 |
+
widths = [max(len(cell) for cell in column) for column in zip(*rows)]
|
721 |
+
print()
|
722 |
+
for row in rows:
|
723 |
+
print(" ".join(cell + " " * (width - len(cell)) for cell, width in zip(row, widths)))
|
724 |
+
print()
|
725 |
+
|
726 |
+
def setup_weight_histograms(self, title: str = None) -> None:
|
727 |
+
"""Construct summary ops to include histograms of all trainable parameters in TensorBoard."""
|
728 |
+
if title is None:
|
729 |
+
title = self.name
|
730 |
+
|
731 |
+
with tf.name_scope(None), tf.device(None), tf.control_dependencies(None):
|
732 |
+
for local_name, var in self._get_trainables().items():
|
733 |
+
if "/" in local_name:
|
734 |
+
p = local_name.split("/")
|
735 |
+
name = title + "_" + p[-1] + "/" + "_".join(p[:-1])
|
736 |
+
else:
|
737 |
+
name = title + "_toplevel/" + local_name
|
738 |
+
|
739 |
+
tf.summary.histogram(name, var)
|
740 |
+
|
741 |
+
#----------------------------------------------------------------------------
|
742 |
+
# Backwards-compatible emulation of legacy output transformation in Network.run().
|
743 |
+
|
744 |
+
_print_legacy_warning = True
|
745 |
+
|
746 |
+
def _handle_legacy_output_transforms(output_transform, dynamic_kwargs):
|
747 |
+
global _print_legacy_warning
|
748 |
+
legacy_kwargs = ["out_mul", "out_add", "out_shrink", "out_dtype"]
|
749 |
+
if not any(kwarg in dynamic_kwargs for kwarg in legacy_kwargs):
|
750 |
+
return output_transform, dynamic_kwargs
|
751 |
+
|
752 |
+
if _print_legacy_warning:
|
753 |
+
_print_legacy_warning = False
|
754 |
+
print()
|
755 |
+
print("WARNING: Old-style output transformations in Network.run() are deprecated.")
|
756 |
+
print("Consider using 'output_transform=dict(func=tflib.convert_images_to_uint8)'")
|
757 |
+
print("instead of 'out_mul=127.5, out_add=127.5, out_dtype=np.uint8'.")
|
758 |
+
print()
|
759 |
+
assert output_transform is None
|
760 |
+
|
761 |
+
new_kwargs = dict(dynamic_kwargs)
|
762 |
+
new_transform = {kwarg: new_kwargs.pop(kwarg) for kwarg in legacy_kwargs if kwarg in dynamic_kwargs}
|
763 |
+
new_transform["func"] = _legacy_output_transform_func
|
764 |
+
return new_transform, new_kwargs
|
765 |
+
|
766 |
+
def _legacy_output_transform_func(*expr, out_mul=1.0, out_add=0.0, out_shrink=1, out_dtype=None):
|
767 |
+
if out_mul != 1.0:
|
768 |
+
expr = [x * out_mul for x in expr]
|
769 |
+
|
770 |
+
if out_add != 0.0:
|
771 |
+
expr = [x + out_add for x in expr]
|
772 |
+
|
773 |
+
if out_shrink > 1:
|
774 |
+
ksize = [1, 1, out_shrink, out_shrink]
|
775 |
+
expr = [tf.nn.avg_pool(x, ksize=ksize, strides=ksize, padding="VALID", data_format="NCHW") for x in expr]
|
776 |
+
|
777 |
+
if out_dtype is not None:
|
778 |
+
if tf.as_dtype(out_dtype).is_integer:
|
779 |
+
expr = [tf.round(x) for x in expr]
|
780 |
+
expr = [tf.saturate_cast(x, out_dtype) for x in expr]
|
781 |
+
return expr
|
PTI/models/StyleCLIP/global_directions/dnnlib/tflib/ops/__init__.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
# empty
|