|
|
|
|
|
|
|
|
|
print('=' * 70) |
|
print('Giant Music Transformer Gradio App') |
|
|
|
print('=' * 70) |
|
print('Loading core Giant Music Transformer modules...') |
|
|
|
import os |
|
|
|
import time as reqtime |
|
import datetime |
|
from pytz import timezone |
|
|
|
print('=' * 70) |
|
print('Loading main Giant Music Transformer modules...') |
|
|
|
os.environ['USE_FLASH_ATTENTION'] = '1' |
|
|
|
import torch |
|
|
|
torch.set_float32_matmul_precision('high') |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
torch.backends.cudnn.allow_tf32 = True |
|
torch.backends.cuda.enable_mem_efficient_sdp(True) |
|
torch.backends.cuda.enable_math_sdp(True) |
|
torch.backends.cuda.enable_flash_sdp(True) |
|
torch.backends.cuda.enable_cudnn_sdp(True) |
|
|
|
import TMIDIX |
|
|
|
from midi_to_colab_audio import midi_to_colab_audio |
|
|
|
from x_transformer_1_23_2 import * |
|
|
|
import random |
|
|
|
print('=' * 70) |
|
print('Loading aux Giant Music Transformer modules...') |
|
|
|
import matplotlib.pyplot as plt |
|
|
|
import gradio as gr |
|
import spaces |
|
|
|
print('=' * 70) |
|
print('PyTorch version:', torch.__version__) |
|
print('=' * 70) |
|
print('Done!') |
|
print('Enjoy! :)') |
|
print('=' * 70) |
|
|
|
|
|
|
|
MODEL_CHECKPOINT = 'Giant_Music_Transformer_Medium_Trained_Model_25603_steps_0.3799_loss_0.8934_acc.pth' |
|
|
|
SOUDFONT_PATH = 'SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2' |
|
|
|
NUM_OUT_BATCHES = 8 |
|
|
|
PREVIEW_LENGTH = 120 |
|
|
|
|
|
|
|
print('=' * 70) |
|
print('Instantiating model...') |
|
|
|
device_type = 'cuda' |
|
dtype = 'bfloat16' |
|
|
|
ptdtype = {'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype] |
|
ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype) |
|
|
|
SEQ_LEN = 8192 |
|
PAD_IDX = 19463 |
|
|
|
model = TransformerWrapper( |
|
num_tokens = PAD_IDX+1, |
|
max_seq_len = SEQ_LEN, |
|
attn_layers = Decoder(dim = 2048, |
|
depth = 8, |
|
heads = 32, |
|
rotary_pos_emb = True, |
|
attn_flash = True |
|
) |
|
) |
|
|
|
model = AutoregressiveWrapper(model, ignore_index=PAD_IDX, pad_value=PAD_IDX) |
|
|
|
print('=' * 70) |
|
print('Loading model checkpoint...') |
|
|
|
model.load_state_dict(torch.load(MODEL_CHECKPOINT, map_location='cpu')) |
|
|
|
print('=' * 70) |
|
print('Done!') |
|
print('=' * 70) |
|
print('Model will use', dtype, 'precision...') |
|
print('=' * 70) |
|
|
|
|
|
|
|
def load_midi(input_midi): |
|
|
|
raw_score = TMIDIX.midi2single_track_ms_score(input_midi.name) |
|
|
|
escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True) |
|
|
|
escore_notes = TMIDIX.augment_enhanced_score_notes(escore_notes[0], timings_divider=16) |
|
|
|
instruments_list = list(set([y[6] for y in escore_notes])) |
|
|
|
|
|
|
|
|
|
|
|
melody_chords = [] |
|
|
|
|
|
|
|
if 128 in instruments_list: |
|
drums_present = 19331 |
|
else: |
|
drums_present = 19330 |
|
|
|
pat = escore_notes[0][6] |
|
|
|
melody_chords.extend([19461, drums_present, 19332+pat]) |
|
|
|
|
|
|
|
|
|
|
|
pe = escore_notes[0] |
|
|
|
for e in escore_notes: |
|
|
|
|
|
|
|
|
|
|
|
delta_time = max(0, min(255, e[1]-pe[1])) |
|
|
|
|
|
|
|
dur = max(0, min(255, e[2])) |
|
cha = max(0, min(15, e[3])) |
|
|
|
|
|
if cha == 9: |
|
pat = 128 |
|
|
|
else: |
|
pat = e[6] |
|
|
|
|
|
|
|
ptc = max(1, min(127, e[4])) |
|
|
|
|
|
|
|
|
|
vel = max(8, min(127, e[5])) |
|
velocity = round(vel / 15)-1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dur_vel = (8 * dur) + velocity |
|
pat_ptc = (129 * pat) + ptc |
|
|
|
melody_chords.extend([delta_time, dur_vel+256, pat_ptc+2304]) |
|
|
|
pe = e |
|
|
|
return melody_chords |
|
|
|
|
|
|
|
def save_midi(tokens, batch_number=None): |
|
|
|
song = tokens |
|
song_f = [] |
|
|
|
time = 0 |
|
dur = 0 |
|
vel = 90 |
|
pitch = 0 |
|
channel = 0 |
|
|
|
patches = [-1] * 16 |
|
patches[9] = 9 |
|
|
|
channels = [0] * 16 |
|
channels[9] = 1 |
|
|
|
for ss in song: |
|
|
|
if 0 <= ss < 256: |
|
|
|
time += ss * 16 |
|
|
|
if 256 <= ss < 2304: |
|
|
|
dur = ((ss-256) // 8) * 16 |
|
vel = (((ss-256) % 8)+1) * 15 |
|
|
|
if 2304 <= ss < 18945: |
|
|
|
patch = (ss-2304) // 129 |
|
|
|
if patch < 128: |
|
|
|
if patch not in patches: |
|
if 0 in channels: |
|
cha = channels.index(0) |
|
channels[cha] = 1 |
|
else: |
|
cha = 15 |
|
|
|
patches[cha] = patch |
|
channel = patches.index(patch) |
|
else: |
|
channel = patches.index(patch) |
|
|
|
if patch == 128: |
|
channel = 9 |
|
|
|
pitch = (ss-2304) % 129 |
|
|
|
song_f.append(['note', time, dur, channel, pitch, vel, patch ]) |
|
|
|
patches = [0 if x==-1 else x for x in patches] |
|
|
|
if batch_number == None: |
|
fname = 'Giant-Music-Transformer-Music-Composition' |
|
|
|
else: |
|
fname = 'Giant-Music-Transformer-Music-Composition_'+str(batch_number) |
|
|
|
data = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f, |
|
output_signature = 'Giant Music Transformer', |
|
output_file_name = fname, |
|
track_name='Project Los Angeles', |
|
list_of_MIDI_patches=patches, |
|
verbose=False |
|
) |
|
|
|
return song_f |
|
|
|
|
|
|
|
@spaces.GPU |
|
def generate_music(prime, |
|
num_gen_tokens, |
|
num_mem_tokens, |
|
num_gen_batches, |
|
gen_outro, |
|
gen_drums, |
|
model_temperature, |
|
model_sampling_top_p |
|
): |
|
|
|
if not prime: |
|
inputs = [19461] |
|
|
|
else: |
|
inputs = prime[-num_mem_tokens:] |
|
|
|
if gen_outro == 'Force': |
|
inputs.extend([18945]) |
|
|
|
if gen_drums: |
|
drums = [36, 38] |
|
drum_pitch = random.choice(drums) |
|
inputs.extend([0, ((8*8)+6)+256, ((128*129)+drum_pitch)+2304]) |
|
|
|
|
|
model.cuda() |
|
model.eval() |
|
|
|
print('Generating...') |
|
|
|
inp = [inputs] * num_gen_batches |
|
|
|
inp = torch.LongTensor(inp).cuda() |
|
|
|
with ctx: |
|
with torch.inference_mode(): |
|
out = model.generate(inp, |
|
num_gen_tokens, |
|
filter_logits_fn=top_p, |
|
filter_kwargs={'thres': model_sampling_top_p}, |
|
temperature=model_temperature, |
|
return_prime=False, |
|
verbose=False) |
|
|
|
output = out.tolist() |
|
|
|
output_batches = [] |
|
|
|
if gen_outro == 'Disable': |
|
for o in output: |
|
output_batches.append([t for t in o if not 18944 < t < 19330]) |
|
|
|
else: |
|
output_batches = output |
|
|
|
print('Done!') |
|
print('=' * 70) |
|
|
|
return output_batches |
|
|
|
|
|
|
|
def generate_callback(input_midi, |
|
num_prime_tokens, |
|
num_gen_tokens, |
|
num_mem_tokens, |
|
gen_outro, |
|
gen_drums, |
|
model_temperature, |
|
model_sampling_top_p, |
|
final_composition, |
|
generated_batches, |
|
block_lines |
|
): |
|
|
|
generated_batches = [] |
|
|
|
if not final_composition and input_midi is not None: |
|
final_composition = load_midi(input_midi)[:num_prime_tokens] |
|
midi_score = save_midi(final_composition) |
|
block_lines.append(midi_score[-1][1] / 1000) |
|
|
|
batched_gen_tokens = generate_music(final_composition, |
|
num_gen_tokens, |
|
num_mem_tokens, |
|
NUM_OUT_BATCHES, |
|
gen_outro, |
|
gen_drums, |
|
model_temperature, |
|
model_sampling_top_p |
|
) |
|
|
|
outputs = [] |
|
|
|
for i in range(len(batched_gen_tokens)): |
|
|
|
tokens = batched_gen_tokens[i] |
|
|
|
|
|
tokens_preview = final_composition[-PREVIEW_LENGTH:] |
|
|
|
|
|
midi_score = save_midi(tokens_preview + tokens, i) |
|
|
|
|
|
|
|
if len(final_composition) > PREVIEW_LENGTH: |
|
midi_plot = TMIDIX.plot_ms_SONG(midi_score, |
|
plot_title='Batch # ' + str(i), |
|
preview_length_in_notes=int(PREVIEW_LENGTH / 3), |
|
return_plt=True |
|
) |
|
|
|
else: |
|
midi_plot = TMIDIX.plot_ms_SONG(midi_score, |
|
plot_title='Batch # ' + str(i), |
|
return_plt=True |
|
) |
|
|
|
|
|
fname = 'Giant-Music-Transformer-Music-Composition_'+str(i) |
|
|
|
|
|
midi_audio = midi_to_colab_audio(fname + '.mid', |
|
soundfont_path=SOUDFONT_PATH, |
|
sample_rate=16000, |
|
output_for_gradio=True |
|
) |
|
|
|
outputs.append([(16000, midi_audio), midi_plot, tokens]) |
|
|
|
return outputs, final_composition, generated_batches, block_lines |
|
|
|
|
|
|
|
def generate_callback_wrapper(input_midi, |
|
num_prime_tokens, |
|
num_gen_tokens, |
|
num_mem_tokens, |
|
gen_outro, |
|
gen_drums, |
|
model_temperature, |
|
model_sampling_top_p, |
|
final_composition, |
|
generated_batches, |
|
block_lines |
|
): |
|
|
|
print('=' * 70) |
|
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) |
|
start_time = reqtime.time() |
|
|
|
print('=' * 70) |
|
if input_midi is not None: |
|
fn = os.path.basename(input_midi.name) |
|
fn1 = fn.split('.')[0] |
|
print('Input file name:', fn) |
|
|
|
print('Num prime tokens:', num_prime_tokens) |
|
print('Num gen tokens:', num_gen_tokens) |
|
print('Num mem tokens:', num_mem_tokens) |
|
print('Gen drums:', gen_drums) |
|
print('Gen outro:', gen_outro) |
|
|
|
print('Model temp:', model_temperature) |
|
print('Model top_p:', model_sampling_top_p) |
|
print('=' * 70) |
|
|
|
result = generate_callback(input_midi, |
|
num_prime_tokens, |
|
num_gen_tokens, |
|
num_mem_tokens, |
|
gen_outro, |
|
gen_drums, |
|
model_temperature, |
|
model_sampling_top_p, |
|
final_composition, |
|
generated_batches, |
|
block_lines |
|
) |
|
|
|
generated_batches = [sublist[-1] for sublist in result[0]] |
|
|
|
print('=' * 70) |
|
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) |
|
print('=' * 70) |
|
print('Req execution time:', (reqtime.time() - start_time), 'sec') |
|
print('*' * 70) |
|
|
|
return tuple([result[1], generated_batches, result[3]] + [item for sublist in result[0] for item in sublist[:-1]]) |
|
|
|
|
|
|
|
def add_batch(batch_number, final_composition, generated_batches, block_lines): |
|
|
|
if generated_batches: |
|
final_composition.extend(generated_batches[batch_number]) |
|
|
|
|
|
midi_score = save_midi(final_composition) |
|
|
|
block_lines.append(midi_score[-1][1] / 1000) |
|
|
|
|
|
midi_plot = TMIDIX.plot_ms_SONG(midi_score, |
|
plot_title='Giant Music Transformer Composition', |
|
block_lines_times_list=block_lines[:-1], |
|
return_plt=True) |
|
|
|
|
|
fname = 'Giant-Music-Transformer-Music-Composition' |
|
|
|
|
|
midi_audio = midi_to_colab_audio(fname + '.mid', |
|
soundfont_path=SOUDFONT_PATH, |
|
sample_rate=16000, |
|
output_for_gradio=True |
|
) |
|
|
|
print('Added batch #', batch_number) |
|
print('=' * 70) |
|
|
|
return (16000, midi_audio), midi_plot, fname+'.mid', final_composition, generated_batches, block_lines |
|
|
|
else: |
|
return None, None, None, [], [], [] |
|
|
|
|
|
|
|
def remove_batch(batch_number, num_tokens, final_composition, generated_batches, block_lines): |
|
|
|
if final_composition: |
|
|
|
if len(final_composition) > num_tokens: |
|
final_composition = final_composition[:-num_tokens] |
|
block_lines.pop() |
|
|
|
|
|
midi_score = save_midi(final_composition) |
|
|
|
|
|
midi_plot = TMIDIX.plot_ms_SONG(midi_score, |
|
plot_title='Giant Music Transformer Composition', |
|
block_lines_times_list=block_lines[:-1], |
|
return_plt=True) |
|
|
|
|
|
fname = 'Giant-Music-Transformer-Music-Composition' |
|
|
|
|
|
midi_audio = midi_to_colab_audio(fname + '.mid', |
|
soundfont_path=SOUDFONT_PATH, |
|
sample_rate=16000, |
|
output_for_gradio=True |
|
) |
|
|
|
print('Removed batch #', batch_number) |
|
print('=' * 70) |
|
|
|
return (16000, midi_audio), midi_plot, fname+'.mid', final_composition, generated_batches, block_lines |
|
|
|
else: |
|
return None, None, None, [], [], [] |
|
|
|
|
|
|
|
def reset(final_composition=[], generated_batches=[], block_lines=[]): |
|
|
|
final_composition = [] |
|
generated_batches = [] |
|
block_lines = [] |
|
|
|
return final_composition, generated_batches, block_lines |
|
|
|
|
|
|
|
def reset_demo(final_composition=[], generated_batches=[], block_lines=[]): |
|
|
|
final_composition = [] |
|
generated_batches = [] |
|
block_lines = [] |
|
|
|
|
|
|
|
PDT = timezone('US/Pacific') |
|
|
|
print('=' * 70) |
|
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) |
|
print('=' * 70) |
|
|
|
with gr.Blocks() as demo: |
|
|
|
demo.load(reset_demo) |
|
|
|
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Giant Music Transformer</h1>") |
|
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Fast multi-instrumental music transformer with true full MIDI instruments range, efficient encoding, octo-velocity and outro tokens</h1>") |
|
gr.HTML(""" |
|
Check out <a href="https://github.com/asigalov61/Giant-Music-Transformer">Giant Music Transformer</a> on GitHub! |
|
|
|
<p> |
|
<a href="https://colab.research.google.com/github/asigalov61/Giant-Music-Transformer/blob/main/Giant_Music_Transformer.ipynb"> |
|
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"> |
|
</a> or |
|
<a href="https://huggingface.co/spaces/asigalov61/Giant-Music-Transformer?duplicate=true"> |
|
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-md.svg" alt="Duplicate in Hugging Face"> |
|
</a> |
|
</p> |
|
|
|
for faster execution and endless generation! |
|
""") |
|
|
|
|
|
|
|
final_composition = gr.State([]) |
|
generated_batches = gr.State([]) |
|
block_lines = gr.State([]) |
|
|
|
|
|
|
|
gr.Markdown("## Upload seed MIDI or click 'Generate' button for random output") |
|
|
|
input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"]) |
|
input_midi.upload(reset, [final_composition, generated_batches, block_lines], |
|
[final_composition, generated_batches, block_lines]) |
|
|
|
gr.Markdown("## Generate") |
|
|
|
num_prime_tokens = gr.Slider(15, 6990, value=600, step=3, label="Number of prime tokens") |
|
num_gen_tokens = gr.Slider(15, 1200, value=600, step=3, label="Number of tokens to generate") |
|
num_mem_tokens = gr.Slider(15, 6990, value=6990, step=3, label="Number of memory tokens") |
|
gen_drums = gr.Checkbox(value=False, label="Introduce drums") |
|
gen_outro = gr.Radio(["Auto", "Disable", "Force"], value="Auto", label="Outro options") |
|
model_temperature = gr.Slider(0.1, 1, value=0.9, step=0.01, label="Model temperature") |
|
model_sampling_top_p = gr.Slider(0.1, 1, value=0.96, step=0.01, label="Model sampling top p value") |
|
|
|
generate_btn = gr.Button("Generate", variant="primary") |
|
|
|
gr.Markdown("## Select batch") |
|
|
|
outputs = [final_composition, generated_batches, block_lines] |
|
|
|
for i in range(NUM_OUT_BATCHES): |
|
with gr.Tab(f"Batch # {i}") as tab: |
|
|
|
audio_output = gr.Audio(label=f"Batch # {i} MIDI Audio", format="mp3", elem_id="midi_audio") |
|
plot_output = gr.Plot(label=f"Batch # {i} MIDI Plot") |
|
|
|
outputs.extend([audio_output, plot_output]) |
|
|
|
generate_btn.click(generate_callback_wrapper, |
|
[input_midi, |
|
num_prime_tokens, |
|
num_gen_tokens, |
|
num_mem_tokens, |
|
gen_outro, |
|
gen_drums, |
|
model_temperature, |
|
model_sampling_top_p, |
|
final_composition, |
|
generated_batches, |
|
block_lines |
|
], |
|
outputs |
|
) |
|
|
|
gr.Markdown("## Add/Remove batch") |
|
|
|
batch_number = gr.Slider(0, NUM_OUT_BATCHES-1, value=0, step=1, label="Batch number to add/remove") |
|
|
|
add_btn = gr.Button("Add batch", variant="primary") |
|
remove_btn = gr.Button("Remove batch", variant="stop") |
|
|
|
final_audio_output = gr.Audio(label="Final MIDI audio", format="mp3", elem_id="midi_audio") |
|
final_plot_output = gr.Plot(label="Final MIDI plot") |
|
final_file_output = gr.File(label="Final MIDI file") |
|
|
|
add_btn.click(add_batch, [batch_number, final_composition, generated_batches, block_lines], |
|
[final_audio_output, final_plot_output, final_file_output, final_composition, generated_batches, block_lines]) |
|
|
|
remove_btn.click(remove_batch, [batch_number, num_gen_tokens, final_composition, generated_batches, block_lines], |
|
[final_audio_output, final_plot_output, final_file_output, final_composition, generated_batches, block_lines]) |
|
|
|
demo.unload(reset_demo) |
|
|
|
|
|
|
|
demo.launch() |
|
|
|
|