Spaces:
Sleeping
Sleeping
from typing import * | |
BACKEND = 'spconv' | |
DEBUG = False | |
ATTN = 'flash_attn' | |
def __from_env(): | |
import os | |
global BACKEND | |
global DEBUG | |
global ATTN | |
env_sparse_backend = os.environ.get('SPARSE_BACKEND') | |
env_sparse_debug = os.environ.get('SPARSE_DEBUG') | |
env_sparse_attn = os.environ.get('SPARSE_ATTN_BACKEND') | |
if env_sparse_attn is None: | |
env_sparse_attn = os.environ.get('ATTN_BACKEND') | |
if env_sparse_backend is not None and env_sparse_backend in ['spconv', 'torchsparse']: | |
BACKEND = env_sparse_backend | |
if env_sparse_debug is not None: | |
DEBUG = env_sparse_debug == '1' | |
if env_sparse_attn is not None and env_sparse_attn in ['xformers', 'flash_attn']: | |
ATTN = env_sparse_attn | |
print(f"[SPARSE] Backend: {BACKEND}, Attention: {ATTN}") | |
__from_env() | |
def set_backend(backend: Literal['spconv', 'torchsparse']): | |
global BACKEND | |
BACKEND = backend | |
def set_debug(debug: bool): | |
global DEBUG | |
DEBUG = debug | |
def set_attn(attn: Literal['xformers', 'flash_attn']): | |
global ATTN | |
ATTN = attn | |
import importlib | |
__attributes = { | |
'SparseTensor': 'basic', | |
'sparse_batch_broadcast': 'basic', | |
'sparse_batch_op': 'basic', | |
'sparse_cat': 'basic', | |
'sparse_unbind': 'basic', | |
'SparseGroupNorm': 'norm', | |
'SparseLayerNorm': 'norm', | |
'SparseGroupNorm32': 'norm', | |
'SparseLayerNorm32': 'norm', | |
'SparseReLU': 'nonlinearity', | |
'SparseSiLU': 'nonlinearity', | |
'SparseGELU': 'nonlinearity', | |
'SparseActivation': 'nonlinearity', | |
'SparseLinear': 'linear', | |
'sparse_scaled_dot_product_attention': 'attention', | |
'SerializeMode': 'attention', | |
'sparse_serialized_scaled_dot_product_self_attention': 'attention', | |
'sparse_windowed_scaled_dot_product_self_attention': 'attention', | |
'SparseMultiHeadAttention': 'attention', | |
'SparseConv3d': 'conv', | |
'SparseInverseConv3d': 'conv', | |
'SparseDownsample': 'spatial', | |
'SparseUpsample': 'spatial', | |
'SparseSubdivide' : 'spatial' | |
} | |
__submodules = ['transformer'] | |
__all__ = list(__attributes.keys()) + __submodules | |
def __getattr__(name): | |
if name not in globals(): | |
if name in __attributes: | |
module_name = __attributes[name] | |
module = importlib.import_module(f".{module_name}", __name__) | |
globals()[name] = getattr(module, name) | |
elif name in __submodules: | |
module = importlib.import_module(f".{name}", __name__) | |
globals()[name] = module | |
else: | |
raise AttributeError(f"module {__name__} has no attribute {name}") | |
return globals()[name] | |
# For Pylance | |
if __name__ == '__main__': | |
from .basic import * | |
from .norm import * | |
from .nonlinearity import * | |
from .linear import * | |
from .attention import * | |
from .conv import * | |
from .spatial import * | |
import transformer | |